YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 011::page 04023423-1
    Author:
    Bevinahalli Prakash Sharath
    ,
    Kusumadhar Snehal
    ,
    B. B. Das
    ,
    Salim Barbhuiya
    DOI: 10.1061/JMCEE7.MTENG-15200
    Publisher: ASCE
    Abstract: This experimental research investigates the influence of geopolymerization factors such as Na2O dosages, water and mineral admixture [bentonite (BT), burnt lime (BL), and ground granulated blast furnace slag (GGBS)] on physiomechanical properties of the pelletized fly ash (FA)–based aggregates. Taguchi’s L9 orthogonal array was adopted to design the mixing ratios for three kinds of fly ash–based aggregates (in the combinations of FA-BT, FA-BL, and FA-GGBS). The degree of geopolymerization of the produced aggregates was characterized using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and a scanning electron microscope (SEM). Most influential response indices in the production of pelletized aggregates were identified using gray relational analysis. The physiomechanical characteristics of the fly-ash aggregates were significantly improved by admixing BL than that of GGBS and BT. However, pelletization efficiency was seen to be superior for GGBS-substituted fly-ash aggregates. The quantified amount of hydration products, i.e., sodium alumino-silicate hydrate (N-A-S-H)/calcium alumino-silicate hydrate (C-A-S-H) for fly ash–based aggregates intensified on increasing Na2O and mineral admixture dosages. The results strongly suggest the existence of a linear relationship between the quantified amount of N-A-S-H/C-A-S-H and individual pellet strength of produced aggregate. The FTIR spectrum showed strong and broadened bands of Si-O terminal for all types of aggregates, representing the conversion of unreacted minerals to chains of aluminosilicate gel (geopolymerized hydration product). Further, it can also be inferred from gray relational analysis that among all other factors, Na2O content significantly impacted the engineering properties of produced fly ash–based aggregates.
    • Download: (10.44Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296102
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorBevinahalli Prakash Sharath
    contributor authorKusumadhar Snehal
    contributor authorB. B. Das
    contributor authorSalim Barbhuiya
    date accessioned2024-04-27T20:51:05Z
    date available2024-04-27T20:51:05Z
    date issued2023/11/01
    identifier other10.1061-JMCEE7.MTENG-15200.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296102
    description abstractThis experimental research investigates the influence of geopolymerization factors such as Na2O dosages, water and mineral admixture [bentonite (BT), burnt lime (BL), and ground granulated blast furnace slag (GGBS)] on physiomechanical properties of the pelletized fly ash (FA)–based aggregates. Taguchi’s L9 orthogonal array was adopted to design the mixing ratios for three kinds of fly ash–based aggregates (in the combinations of FA-BT, FA-BL, and FA-GGBS). The degree of geopolymerization of the produced aggregates was characterized using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and a scanning electron microscope (SEM). Most influential response indices in the production of pelletized aggregates were identified using gray relational analysis. The physiomechanical characteristics of the fly-ash aggregates were significantly improved by admixing BL than that of GGBS and BT. However, pelletization efficiency was seen to be superior for GGBS-substituted fly-ash aggregates. The quantified amount of hydration products, i.e., sodium alumino-silicate hydrate (N-A-S-H)/calcium alumino-silicate hydrate (C-A-S-H) for fly ash–based aggregates intensified on increasing Na2O and mineral admixture dosages. The results strongly suggest the existence of a linear relationship between the quantified amount of N-A-S-H/C-A-S-H and individual pellet strength of produced aggregate. The FTIR spectrum showed strong and broadened bands of Si-O terminal for all types of aggregates, representing the conversion of unreacted minerals to chains of aluminosilicate gel (geopolymerized hydration product). Further, it can also be inferred from gray relational analysis that among all other factors, Na2O content significantly impacted the engineering properties of produced fly ash–based aggregates.
    publisherASCE
    titleInfluence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS
    typeJournal Article
    journal volume35
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-15200
    journal fristpage04023423-1
    journal lastpage04023423-31
    page31
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian