YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastic Wave Propagation through a Layered Rock Mass with Adhesive Bedding Planes

    Source: International Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 012::page 04023222-1
    Author:
    Wusheng Zhao
    ,
    Changkun Qin
    ,
    Weizhong Chen
    ,
    Xianjun Tan
    DOI: 10.1061/IJGNAI.GMENG-8453
    Publisher: ASCE
    Abstract: Wave propagation in a layered rock mass is a common problem in geotechnical engineering. The bedding planes in a layered rock mass are generally in situ stressed and adhesively bonded. This study extended the time-domain recursive method to analyze the wave propagation in a layered rock mass with adhesive bedding planes. The maximum stress criterion was used to indicate the adhesive failure of bedding planes. The Bandis–Barton and Coulomb slip models were used to characterize the normal and tangential behaviors of bedding planes after the adhesive bond fails. Based on the backward differentiation formula, an analytical solution reflecting four possible states of the bedding plane and the in situ stresses in rock mass was established. Subsequently, the solution was verified for various conditions. Besides, parametric studies were carried out to assess the influences of adhesive properties of bedding planes and in situ stresses on wave transmission. The transmission coefficient of seismic waves increases linearly as the adhesive strength of the bedding plane increases. The in situ normal stress could facilitate wave transmission across the bedding plane, while the in situ shear stress causes the direction-dependency of transmitted waves. Furthermore, the impacts of bedding plane adhesion and in situ stresses on wave propagation were influenced by the amplitude, frequency, and impinging angle of incident waves. The welded model that ignores the adhesion failure of the bedding plane and the unbonded models that neglect the interface adhesion could overestimate or underestimate the transmitted wave across a bedding plane.
    • Download: (2.124Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastic Wave Propagation through a Layered Rock Mass with Adhesive Bedding Planes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296089
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorWusheng Zhao
    contributor authorChangkun Qin
    contributor authorWeizhong Chen
    contributor authorXianjun Tan
    date accessioned2024-04-27T20:50:45Z
    date available2024-04-27T20:50:45Z
    date issued2023/12/01
    identifier other10.1061-IJGNAI.GMENG-8453.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296089
    description abstractWave propagation in a layered rock mass is a common problem in geotechnical engineering. The bedding planes in a layered rock mass are generally in situ stressed and adhesively bonded. This study extended the time-domain recursive method to analyze the wave propagation in a layered rock mass with adhesive bedding planes. The maximum stress criterion was used to indicate the adhesive failure of bedding planes. The Bandis–Barton and Coulomb slip models were used to characterize the normal and tangential behaviors of bedding planes after the adhesive bond fails. Based on the backward differentiation formula, an analytical solution reflecting four possible states of the bedding plane and the in situ stresses in rock mass was established. Subsequently, the solution was verified for various conditions. Besides, parametric studies were carried out to assess the influences of adhesive properties of bedding planes and in situ stresses on wave transmission. The transmission coefficient of seismic waves increases linearly as the adhesive strength of the bedding plane increases. The in situ normal stress could facilitate wave transmission across the bedding plane, while the in situ shear stress causes the direction-dependency of transmitted waves. Furthermore, the impacts of bedding plane adhesion and in situ stresses on wave propagation were influenced by the amplitude, frequency, and impinging angle of incident waves. The welded model that ignores the adhesion failure of the bedding plane and the unbonded models that neglect the interface adhesion could overestimate or underestimate the transmitted wave across a bedding plane.
    publisherASCE
    titleElastic Wave Propagation through a Layered Rock Mass with Adhesive Bedding Planes
    typeJournal Article
    journal volume23
    journal issue12
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-8453
    journal fristpage04023222-1
    journal lastpage04023222-12
    page12
    treeInternational Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian