Show simple item record

contributor authorBhaduri, Anindya
contributor authorRamachandra, Nesar
contributor authorKrishnan Ravi, Sandipp
contributor authorLuan, Lele
contributor authorPandita, Piyush
contributor authorBalaprakash, Prasanna
contributor authorAnitescu, Mihai
contributor authorSun, Changjie
contributor authorWang, Liping
date accessioned2024-04-24T22:33:12Z
date available2024-04-24T22:33:12Z
date copyright3/5/2024 12:00:00 AM
date issued2024
identifier issn1530-9827
identifier otherjcise_24_5_051009.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295433
description abstractEstablishing fast and accurate structure-to-property relationships is an important component in the design and discovery of advanced materials. Physics-based simulation models like the finite element method (FEM) are often used to predict deformation, stress, and strain fields as a function of material microstructure in material and structural systems. Such models may be computationally expensive and time intensive if the underlying physics of the system is complex. This limits their application to solve inverse design problems and identify structures that maximize performance. In such scenarios, surrogate models are employed to make the forward mapping computationally efficient to evaluate. However, the high dimensionality of the input microstructure and the output field of interest often renders such surrogate models inefficient, especially when dealing with sparse data. Deep convolutional neural network (CNN) based surrogate models have shown great promise in handling such high-dimensional problems. In this paper, a single ellipsoidal void structure under a uniaxial tensile load represented by a linear elastic, high-dimensional and expensive-to-query, FEM model. We consider two deep CNN architectures, a modified convolutional autoencoder framework with a fully connected bottleneck and a UNet CNN, and compare their accuracy in predicting the von Mises stress field for any given input void shape in the FEM model. Additionally, a sensitivity analysis study is performed using the two approaches, where the variation in the prediction accuracy on unseen test data is studied through numerical experiments by varying the number of training samples from 20 to 100.
publisherThe American Society of Mechanical Engineers (ASME)
titleEfficient Mapping Between Void Shapes and Stress Fields Using Deep Convolutional Neural Networks With Sparse Data
typeJournal Paper
journal volume24
journal issue5
journal titleJournal of Computing and Information Science in Engineering
identifier doi10.1115/1.4064622
journal fristpage51009-1
journal lastpage51009-12
page12
treeJournal of Computing and Information Science in Engineering:;2024:;volume( 024 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record