Show simple item record

contributor authorWang, Xuegao
contributor authorHu, Jun
contributor authorMa, Shuai
date accessioned2023-11-29T19:48:32Z
date available2023-11-29T19:48:32Z
date copyright6/12/2023 12:00:00 AM
date issued6/12/2023 12:00:00 AM
date issued2023-06-12
identifier issn0889-504X
identifier otherturbo_145_9_091008.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295042
description abstractDespite the extensive application of three-dimensional Reynolds-averaged Navier-Stokes equation (RANS) in axial compressor numerical simulations, body-force model (BFM) also plays its own role profiting from its low computation cost. However, the computation accuracy highly depends on the modeling of blade force, which usually involves several parameter constants. In this work, data assimilation based on Ensemble Kalman Filter (EnKF) was employed to optimize these model constants in BFM. Previous work associated with data assimilation mainly focuses on employing only one data source. Considering the various measurement quantities in engineering practice, disparate data were incorporated into the assimilation method to improve the prediction. The test case of a low-speed axial compressor was provided. Only one single data source, i.e., total pressure ratio, was first employed as the observation data in EnKF. And to reveal the superiority of the disparate data assimilation, total pressure ratio and isentropic efficiency were then incorporated to improve the performance prediction. The converged results reveal the robustness of disparate data assimilation based on EnKF. At last, the rationality of the optimized constants is verified further through the great agreement between the measurement and the prediction of BFM, with regard to the radial profile and the performance at another rotational speed.
publisherThe American Society of Mechanical Engineers (ASME)
titleAssimilation of Disparate Data for Improving the Performance Prediction of Body-Force Model
typeJournal Paper
journal volume145
journal issue9
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4062610
journal fristpage91008-1
journal lastpage91008-7
page7
treeJournal of Turbomachinery:;2023:;volume( 145 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record