Show simple item record

contributor authorZhang, Dequan
contributor authorZhao, Zida
contributor authorOuyang, Heng
contributor authorWu, Zeping
contributor authorHan, Xu
date accessioned2023-11-29T19:30:42Z
date available2023-11-29T19:30:42Z
date copyright6/15/2023 12:00:00 AM
date issued6/15/2023 12:00:00 AM
date issued2023-06-15
identifier issn1050-0472
identifier othermd_145_8_081705.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294825
description abstractThis paper develops an efficient reliability analysis method based on the improved radial basis function neural network (RBFNN) to increase the accuracy and efficiency of structural reliability analysis. To solve the problems of low computational accuracy and efficiency of the RBFNN, an improved RBFNN method is developed by transferring the sampling center of Latin hypercube sampling (LHS) from the mean values of random variables to the most probable point (MPP) in the sampling step. Then, the particle swarm optimization algorithm is adopted to optimize the shape parameters of RBFNN, and the RBFNN model is assessed by the cross-validation method for subsequent reliability analysis using Monte Carlo simulation (MCS). Four numerical examples are investigated to demonstrate the correctness and effectiveness of the proposed method. To compare the computational accuracy and efficiency of the proposed method, the traditional radial basis function method, hybrid radial basis neural network method, first-order reliability method (FORM), second-order reliability method (SORM), and MCS method are applied to solve each example. All the results demonstrate that the proposed method has higher accuracy and efficiency for structural reliability analysis. Importantly, one practical example of an industrial robot is provided here, which demonstrates that the developed method also has good applicability and effectiveness for complex engineering problems.
publisherThe American Society of Mechanical Engineers (ASME)
titleAn Efficient Reliability Analysis Method Based on the Improved Radial Basis Function Neural Network
typeJournal Paper
journal volume145
journal issue8
journal titleJournal of Mechanical Design
identifier doi10.1115/1.4062584
journal fristpage81705-1
journal lastpage81705-11
page11
treeJournal of Mechanical Design:;2023:;volume( 145 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record