Show simple item record

contributor authorMcMasters, Robert L.
contributor authorMonte, Filippo de
contributor authorD'Alessandro, Giampaolo
contributor authorBeck, James V.
date accessioned2023-11-29T18:47:23Z
date available2023-11-29T18:47:23Z
date copyright6/13/2023 12:00:00 AM
date issued6/13/2023 12:00:00 AM
date issued2023-06-13
identifier issn2832-8450
identifier otherht_145_09_091401.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294387
description abstractAnalytical solutions for thermal conduction problems are extremely important, particularly for verification of numerical codes. Temperatures and heat fluxes can be calculated very precisely, normally to eight or ten significant figures, even in situations involving large temperature gradients. It can be convenient to have a general analytical solution for a transient conduction problem in rectangular coordinates. The general solution is based on the principle that the three primary types of boundary conditions (prescribed temperature, prescribed heat flux, and convective) can all be handled using convective boundary conditions. A large convection coefficient closely approximates a prescribed temperature boundary condition and a very low convection coefficient closely approximates an insulated boundary condition. Since a dimensionless solution is used in this research, the effect of various values of dimensionless convection coefficients, or Biot number values, are explored. An understandable concern with a general analytical solution is the effect of the choice of convection coefficients on the precision of the solution, since the primary motivation for using analytical solutions is the precision offered. An investigation is made in this study to determine the effects of the choices of large and small convection coefficients on the precision of the analytical solutions generated by the general convective formulation. Results are provided, in tabular and graphical form, to illustrate the effects of the choices of convection coefficients on the precision of the general analytical solution.
publisherThe American Society of Mechanical Engineers (ASME)
titleThe Effect of Biot Number on a Generalized Heat Conduction Solution
typeJournal Paper
journal volume145
journal issue9
journal titleASME Journal of Heat and Mass Transfer
identifier doi10.1115/1.4062637
journal fristpage91401-1
journal lastpage91401-10
page10
treeASME Journal of Heat and Mass Transfer:;2023:;volume( 145 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record