Show simple item record

contributor authorGauthier, Rémy
contributor authorAbouelleil, Hazem
contributor authorBoussès, Yoan
contributor authorBrulat-Bouchard, Nathalie
contributor authorColon, Pierre
contributor authorChenal, Jean-Marc
contributor authorTillier, Yannick
contributor authorGrosgogeat, Brigitte
date accessioned2023-11-29T18:42:34Z
date available2023-11-29T18:42:34Z
date copyright12/9/2022 12:00:00 AM
date issued12/9/2022 12:00:00 AM
date issued2022-12-09
identifier issn0148-0731
identifier otherbio_145_05_051001.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294334
description abstractWhile dental composite long-term aging has already been studied in the past, no data exist about the early aging while it might be detrimental regarding the composites' longevity. This study aims to better understand the effects of early water exposure on dental composites. Dental resin composites with different fillers ratio were subjected to water exposure during 24 h, 1 week, or 1 month. After photopolymerization, the samples were stored at different conditions, whether in wet or dry condition (W, D, respectively) and in wet conditions after a first 24 h storage in dry conditions (DW). Three-point bending tests were performed to measure the flexural modulus. The samples were then subjected to a sorption/desorption protocol. While the matrix alone did not undergo any mechanical degradation with exposure time, the composites matrices presented a decrease in elastic modulus. This decrease was the highest for the matrix with nonsilanized fillers. Interestingly, the DW condition was detrimental for all the samples. Regarding the sample with nonsilanized fillers in DW for 1 month presented an elastic modulus lower than the matrix alone. These results were assigned to the sorption capacity of the polymer matrix, suggesting that the diffusion mechanisms and the nature of water molecules are determinant in the composite degradation. This study showed that dental composite early degradation mechanisms after water exposure are involved in the polymer matrix postpolymerization process as soon as after 24 h. Such mechanisms are detrimental in terms of the dental composite efficiency and have to be understood.
publisherThe American Society of Mechanical Engineers (ASME)
titleExperimental Investigation of Dental Composites Degradation After Early Water Exposure
typeJournal Paper
journal volume145
journal issue5
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4056197
journal fristpage51001-1
journal lastpage51001-8
page8
treeJournal of Biomechanical Engineering:;2022:;volume( 145 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record