YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    MINQUE Method Variance Component Estimation for the Mixed Additive and Multiplicative Random Error Model

    Source: Journal of Surveying Engineering:;2023:;Volume ( 149 ):;issue: 004::page 04023013-1
    Author:
    Leyang Wang
    ,
    Hao Xiao
    DOI: 10.1061/JSUED2.SUENG-1396
    Publisher: ASCE
    Abstract: To address the problem of inaccurate mixed additive and multiplicative random error stochastic model weighting, we apply the minimum norm quadratic unbiased estimator (MINQUE) to a mixed additive and multiplicative random error model (TMAMM). Then we construct the corresponding calculation formula and iterative algorithm. Based on the formula and algorithm, we estimate the corresponding additive error variance and multiplicative error variance components. The MINQUE variance component estimation (VCE) method is based on (1) invariance, (2) unbiasedness, and (3) minimum normality. Therefore, the variance component estimates derived from the MINQUE method for the mixed additive and multiplicative random error stochastic model also have unbiased and least norm properties. The mixed additive and multiplicative random error stochastic model is modified based on an estimated variance component valuation to obtain a more reasonable parameter valuation. Numerical simulation experiments, digital terrain model (DTM) experiments, and side net measurement are used to verify the effectiveness of the proposed method.
    • Download: (3.126Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      MINQUE Method Variance Component Estimation for the Mixed Additive and Multiplicative Random Error Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294172
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorLeyang Wang
    contributor authorHao Xiao
    date accessioned2023-11-28T00:18:16Z
    date available2023-11-28T00:18:16Z
    date issued8/4/2023 12:00:00 AM
    date issued2023-08-04
    identifier otherJSUED2.SUENG-1396.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294172
    description abstractTo address the problem of inaccurate mixed additive and multiplicative random error stochastic model weighting, we apply the minimum norm quadratic unbiased estimator (MINQUE) to a mixed additive and multiplicative random error model (TMAMM). Then we construct the corresponding calculation formula and iterative algorithm. Based on the formula and algorithm, we estimate the corresponding additive error variance and multiplicative error variance components. The MINQUE variance component estimation (VCE) method is based on (1) invariance, (2) unbiasedness, and (3) minimum normality. Therefore, the variance component estimates derived from the MINQUE method for the mixed additive and multiplicative random error stochastic model also have unbiased and least norm properties. The mixed additive and multiplicative random error stochastic model is modified based on an estimated variance component valuation to obtain a more reasonable parameter valuation. Numerical simulation experiments, digital terrain model (DTM) experiments, and side net measurement are used to verify the effectiveness of the proposed method.
    publisherASCE
    titleMINQUE Method Variance Component Estimation for the Mixed Additive and Multiplicative Random Error Model
    typeJournal Article
    journal volume149
    journal issue4
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/JSUED2.SUENG-1396
    journal fristpage04023013-1
    journal lastpage04023013-8
    page8
    treeJournal of Surveying Engineering:;2023:;Volume ( 149 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian