YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aerodynamic and Aerostatic Performance of a Long-Span Bridge with Wide Single Box Girder Installed with Vertical and Horizontal Stabilizers

    Source: Journal of Structural Engineering:;2023:;Volume ( 149 ):;issue: 008::page 04023106-1
    Author:
    Shengyi Xu
    ,
    Genshen Fang
    ,
    Lin Zhao
    ,
    Yaojun Ge
    ,
    Junfeng Zhang
    DOI: 10.1061/JSENDH.STENG-11925
    Publisher: ASCE
    Abstract: The continuous increase in traffic volume requires wider single box girders for long-span cable-supported bridges. Flutter and aerostatic instability are challenging issues for these flexible bridges, especially when they are located in typhoon-prone regions. Aerodynamic countermeasures such as vertical and horizontal stabilizers, which are convenient in operation, saving in cost, and effective in the enhancement of flutter performance, are usually employed to withstand the wind environment requirement. This study investigates the aerodynamic and aerostatic effects of upper central vertical stabilizers (UCVS), lower central vertical stabilizers (BCVS), horizontal stabilizers (HS), and their combinations on two wide single box girders with an aspect ratio larger than 12 at various angles of attack (AOAs). The optimal layouts of stabilizers for the enhancement of flutter performance are studied using a series of wind tunnel tests. Their control mechanisms are examined and discussed using flutter derivatives and step-by-step (SBS) method. A new index of nominal torsional center (NTC) is proposed to intuitively describe the flutter modality. The correlations among different indexes of flutter modality, flutter derivatives, and Ucr are further analyzed. The static coefficients of the bridge girders and the aerostatic performance of the bridge with or without stabilizers are also analyzed. Experiment results show that the values of Ucr for 4- and 5-m-high single box girders increased by 13.9% and 46.3%, respectively, after the hybrid installation of UCVS, BCVS, and HS at their optimal conditions. The analytical solutions indicate that the installation of different stabilizers changes the variation trend of the aerodynamic damping ratio with the wind speed to increase or reduce the flutter boundary. Four flutter modality indexes including amplitude ratio (Ψ), phase difference (ψ), energy participation level (Ph), and NTC are all found that have no obvious correlations with Ucr. The static analysis on a three-dimensional bridge showed that the optimal stabilizer schemes for flutter have insignificant effects on aerostatic performance.
    • Download: (28.13Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aerodynamic and Aerostatic Performance of a Long-Span Bridge with Wide Single Box Girder Installed with Vertical and Horizontal Stabilizers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294121
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorShengyi Xu
    contributor authorGenshen Fang
    contributor authorLin Zhao
    contributor authorYaojun Ge
    contributor authorJunfeng Zhang
    date accessioned2023-11-28T00:14:36Z
    date available2023-11-28T00:14:36Z
    date issued6/5/2023 12:00:00 AM
    date issued2023-06-05
    identifier otherJSENDH.STENG-11925.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294121
    description abstractThe continuous increase in traffic volume requires wider single box girders for long-span cable-supported bridges. Flutter and aerostatic instability are challenging issues for these flexible bridges, especially when they are located in typhoon-prone regions. Aerodynamic countermeasures such as vertical and horizontal stabilizers, which are convenient in operation, saving in cost, and effective in the enhancement of flutter performance, are usually employed to withstand the wind environment requirement. This study investigates the aerodynamic and aerostatic effects of upper central vertical stabilizers (UCVS), lower central vertical stabilizers (BCVS), horizontal stabilizers (HS), and their combinations on two wide single box girders with an aspect ratio larger than 12 at various angles of attack (AOAs). The optimal layouts of stabilizers for the enhancement of flutter performance are studied using a series of wind tunnel tests. Their control mechanisms are examined and discussed using flutter derivatives and step-by-step (SBS) method. A new index of nominal torsional center (NTC) is proposed to intuitively describe the flutter modality. The correlations among different indexes of flutter modality, flutter derivatives, and Ucr are further analyzed. The static coefficients of the bridge girders and the aerostatic performance of the bridge with or without stabilizers are also analyzed. Experiment results show that the values of Ucr for 4- and 5-m-high single box girders increased by 13.9% and 46.3%, respectively, after the hybrid installation of UCVS, BCVS, and HS at their optimal conditions. The analytical solutions indicate that the installation of different stabilizers changes the variation trend of the aerodynamic damping ratio with the wind speed to increase or reduce the flutter boundary. Four flutter modality indexes including amplitude ratio (Ψ), phase difference (ψ), energy participation level (Ph), and NTC are all found that have no obvious correlations with Ucr. The static analysis on a three-dimensional bridge showed that the optimal stabilizer schemes for flutter have insignificant effects on aerostatic performance.
    publisherASCE
    titleAerodynamic and Aerostatic Performance of a Long-Span Bridge with Wide Single Box Girder Installed with Vertical and Horizontal Stabilizers
    typeJournal Article
    journal volume149
    journal issue8
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-11925
    journal fristpage04023106-1
    journal lastpage04023106-24
    page24
    treeJournal of Structural Engineering:;2023:;Volume ( 149 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian