YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cyclic Response of Sloped Extended End-Plate Moment Connections

    Source: Journal of Structural Engineering:;2022:;Volume ( 149 ):;issue: 003::page 04022266-1
    Author:
    Guohua Sun
    ,
    Zhiqin Li
    ,
    Youzhen Fang
    ,
    Jun Lin
    ,
    Futao Gong
    DOI: 10.1061/JSENDH.STENG-11810
    Publisher: ASCE
    Abstract: Bolted extended end-plate (BEEP) moment connections are extensively recommended in design standards to be used as a prequalified beam-to-column connection in steel portal frames and special moment frame buildings. These standards assume that in such a connection, the beam is perpendicular to the steel column or that the slope angle of the steel beam is very small. To expand the engineering applications of BEEP connections in large-slope angle buildings, in this study, three one-sided specimens at half scale with 0°, 15°, and 30° slope angles, respectively, were designed and tested under cyclic loading. All dimensions of these specimens were identical, except the slope angles of their steel beams. The experimental results showed that the maximum rotation angles of these sloped BEEP connections exceeded 0.05 rad, and they were remarkably larger than those of other types of sloped rigid-moment connections tested by Mashayekh and Uang. However, the force concentration that occurred in the flange at the heel location was similar to that observed by them, and it led to the development of brittle fractures. Particularly, with the increase in the slope angle, the force concentration tended to become more severe. Three strengthening schemes for reducing the force concentration and enhancing the deformation capacities of the sloped BEEP connections subjected to the extremely rare earthquake, i.e., less than 2% probability of exceedance in 50 years, were evaluated using the finite element approach. These were Scheme I: stiffening the rib in the acute-angle zone, Scheme II: employing a reduced beam section (RBS) connection, and Scheme III: forming a curved web cut in a non-RBS beam. The analytical results showed that the three schemes decreased the von Mises stress level in the acute-angle zone of the connection web. Scheme I enhanced the initial rotation stiffness, flexural strength, and deformation rotation capacity. For Scheme II, a RBS configuration was employed, which effectively improved the connection rotation capacity, whereas it decreased the flexural strength of the sloped BEEP connection. Scheme III without a reasonable design led to a degradation of the hysteretic performance, moderate rotation capacity, and low flexural strength. Therefore, Schemes I and II leading to much better seismic behavior than Scheme III are recommended.
    • Download: (4.512Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cyclic Response of Sloped Extended End-Plate Moment Connections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294110
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorGuohua Sun
    contributor authorZhiqin Li
    contributor authorYouzhen Fang
    contributor authorJun Lin
    contributor authorFutao Gong
    date accessioned2023-11-28T00:13:37Z
    date available2023-11-28T00:13:37Z
    date issued12/30/2022 12:00:00 AM
    identifier otherJSENDH.STENG-11810.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294110
    description abstractBolted extended end-plate (BEEP) moment connections are extensively recommended in design standards to be used as a prequalified beam-to-column connection in steel portal frames and special moment frame buildings. These standards assume that in such a connection, the beam is perpendicular to the steel column or that the slope angle of the steel beam is very small. To expand the engineering applications of BEEP connections in large-slope angle buildings, in this study, three one-sided specimens at half scale with 0°, 15°, and 30° slope angles, respectively, were designed and tested under cyclic loading. All dimensions of these specimens were identical, except the slope angles of their steel beams. The experimental results showed that the maximum rotation angles of these sloped BEEP connections exceeded 0.05 rad, and they were remarkably larger than those of other types of sloped rigid-moment connections tested by Mashayekh and Uang. However, the force concentration that occurred in the flange at the heel location was similar to that observed by them, and it led to the development of brittle fractures. Particularly, with the increase in the slope angle, the force concentration tended to become more severe. Three strengthening schemes for reducing the force concentration and enhancing the deformation capacities of the sloped BEEP connections subjected to the extremely rare earthquake, i.e., less than 2% probability of exceedance in 50 years, were evaluated using the finite element approach. These were Scheme I: stiffening the rib in the acute-angle zone, Scheme II: employing a reduced beam section (RBS) connection, and Scheme III: forming a curved web cut in a non-RBS beam. The analytical results showed that the three schemes decreased the von Mises stress level in the acute-angle zone of the connection web. Scheme I enhanced the initial rotation stiffness, flexural strength, and deformation rotation capacity. For Scheme II, a RBS configuration was employed, which effectively improved the connection rotation capacity, whereas it decreased the flexural strength of the sloped BEEP connection. Scheme III without a reasonable design led to a degradation of the hysteretic performance, moderate rotation capacity, and low flexural strength. Therefore, Schemes I and II leading to much better seismic behavior than Scheme III are recommended.
    publisherASCE
    titleCyclic Response of Sloped Extended End-Plate Moment Connections
    typeJournal Article
    journal volume149
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-11810
    journal fristpage04022266-1
    journal lastpage04022266-14
    page14
    treeJournal of Structural Engineering:;2022:;Volume ( 149 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian