YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Compacting Parameters on Intelligent Compaction Quality Based on Dynamic Model

    Source: Journal of Transportation Engineering, Part B: Pavements:;2023:;Volume ( 149 ):;issue: 004::page 04023027-1
    Author:
    Yuan Ma
    ,
    Yingcheng Luan
    ,
    Yang Zhang
    ,
    Tao Ma
    DOI: 10.1061/JPEODX.PVENG-1419
    Publisher: ASCE
    Abstract: To improve the efficiency and reliability of intelligent compaction technology, there is a need to evaluate the influencing factors during the compaction process. However, available research is limited, especially in terms of studies based on the dynamic theory. In this paper, the intelligent compaction process is divided into two stages: the compaction process stage, and the compaction completion stage. By establishing dynamic models for different compaction stages, the existing intelligent compaction dynamic model is modified to achieve refined modeling of the intelligent compaction process. The influencing weight of compacting parameters on intelligent compaction quality was analyzed by designing controlled tests. From the results of this study, it was found that roller weight affects the static compaction depth, whereas vibration force amplitude and frequency dominantly affect the amplitude of displacement period changes during compaction but are not predominant influences of the static compaction depth. The influence proportions of roller weight, vibration force amplitude, and vibration frequency on the final compaction quality were 82.62%, 4.92%, and 12.46%, respectively. In addition, a larger-tonnage vibratory roller and a larger vibration model with low frequency and high vibration force amplitude are suggested for compaction roadworks if rapid subgrade compaction is required. The research in this paper provides theoretical support for intelligent compaction technology so that intelligent compaction will become more applicable in practical engineering.
    • Download: (603.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Compacting Parameters on Intelligent Compaction Quality Based on Dynamic Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294074
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorYuan Ma
    contributor authorYingcheng Luan
    contributor authorYang Zhang
    contributor authorTao Ma
    date accessioned2023-11-28T00:08:06Z
    date available2023-11-28T00:08:06Z
    date issued8/30/2023 12:00:00 AM
    date issued2023-08-30
    identifier otherJPEODX.PVENG-1419.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294074
    description abstractTo improve the efficiency and reliability of intelligent compaction technology, there is a need to evaluate the influencing factors during the compaction process. However, available research is limited, especially in terms of studies based on the dynamic theory. In this paper, the intelligent compaction process is divided into two stages: the compaction process stage, and the compaction completion stage. By establishing dynamic models for different compaction stages, the existing intelligent compaction dynamic model is modified to achieve refined modeling of the intelligent compaction process. The influencing weight of compacting parameters on intelligent compaction quality was analyzed by designing controlled tests. From the results of this study, it was found that roller weight affects the static compaction depth, whereas vibration force amplitude and frequency dominantly affect the amplitude of displacement period changes during compaction but are not predominant influences of the static compaction depth. The influence proportions of roller weight, vibration force amplitude, and vibration frequency on the final compaction quality were 82.62%, 4.92%, and 12.46%, respectively. In addition, a larger-tonnage vibratory roller and a larger vibration model with low frequency and high vibration force amplitude are suggested for compaction roadworks if rapid subgrade compaction is required. The research in this paper provides theoretical support for intelligent compaction technology so that intelligent compaction will become more applicable in practical engineering.
    publisherASCE
    titleInvestigation of Compacting Parameters on Intelligent Compaction Quality Based on Dynamic Model
    typeJournal Article
    journal volume149
    journal issue4
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.PVENG-1419
    journal fristpage04023027-1
    journal lastpage04023027-9
    page9
    treeJournal of Transportation Engineering, Part B: Pavements:;2023:;Volume ( 149 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian