YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Hydrodynamic Mixing in an Afterbay Reservoir

    Source: Journal of Environmental Engineering:;2023:;Volume ( 149 ):;issue: 010::page 04023068-1
    Author:
    Paul A. Work
    DOI: 10.1061/JOEEDU.EEENG-7287
    Publisher: ASCE
    Abstract: This study focused on the mixing of a solute, assumed to be conservative, introduced to one arm of an afterbay reservoir, between Keswick and Shasta Dams on the Sacramento River near Redding, California. Rhodamine water tracer (WT) dye served as the solute in a field experiment, and was introduced over 4.5 h and monitored for 4 days by sondes moored in the reservoir. The scenario was modeled numerically using the Delft3D flexible mesh (FM) hydrodynamic and mixing model, with measured inflows, outflows, water level, water temperatures, and bathymetry as input. Manning’s n and horizontal eddy viscosity served as the (constant) model calibration parameters, and each was adjusted an order of magnitude below the default values to force observed and modeled dye hydrographs to match in arrival time and duration. The low friction factor was concluded to be due to a combination of low flow speeds coupled with energy dissipation inherent to the model. The model and surface drifters equipped with dual-frequency Global Navigation Satellite System equipment revealed velocities in the 1–5  cm/s range in much of the domain during the experiment. Simple analytical expressions were shown to be useful for estimating distance to full cross-sectional mixing, steady-state concentrations, and time to reach them, but the numerical model is required for investigation of the approach to steady state, and at locations where flows intersect. Time to steady-state concentrations was 1.5–13 days for 10 simulations that spanned a wide range of inflow conditions. Model sensitivity tests suggest that wind and heat fluxes were not important during the field study, but simulations of a summer scenario with small inflows of cold water upstream in warm weather should consider water temperature. Both field observations and numerical model results showed inflow to one arm of the reservoir reaching full cross-sectional mixing before plunging below the water surface near the intersection of this arm with the reservoir’s main stem. Model results are being used to guide management decisions related to inflows to the reservoir from a relic mining site that is also a USEPA Superfund site.
    • Download: (8.254Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Hydrodynamic Mixing in an Afterbay Reservoir

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4294003
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorPaul A. Work
    date accessioned2023-11-28T00:00:00Z
    date available2023-11-28T00:00:00Z
    date issued8/10/2023 12:00:00 AM
    date issued2023-08-10
    identifier otherJOEEDU.EEENG-7287.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4294003
    description abstractThis study focused on the mixing of a solute, assumed to be conservative, introduced to one arm of an afterbay reservoir, between Keswick and Shasta Dams on the Sacramento River near Redding, California. Rhodamine water tracer (WT) dye served as the solute in a field experiment, and was introduced over 4.5 h and monitored for 4 days by sondes moored in the reservoir. The scenario was modeled numerically using the Delft3D flexible mesh (FM) hydrodynamic and mixing model, with measured inflows, outflows, water level, water temperatures, and bathymetry as input. Manning’s n and horizontal eddy viscosity served as the (constant) model calibration parameters, and each was adjusted an order of magnitude below the default values to force observed and modeled dye hydrographs to match in arrival time and duration. The low friction factor was concluded to be due to a combination of low flow speeds coupled with energy dissipation inherent to the model. The model and surface drifters equipped with dual-frequency Global Navigation Satellite System equipment revealed velocities in the 1–5  cm/s range in much of the domain during the experiment. Simple analytical expressions were shown to be useful for estimating distance to full cross-sectional mixing, steady-state concentrations, and time to reach them, but the numerical model is required for investigation of the approach to steady state, and at locations where flows intersect. Time to steady-state concentrations was 1.5–13 days for 10 simulations that spanned a wide range of inflow conditions. Model sensitivity tests suggest that wind and heat fluxes were not important during the field study, but simulations of a summer scenario with small inflows of cold water upstream in warm weather should consider water temperature. Both field observations and numerical model results showed inflow to one arm of the reservoir reaching full cross-sectional mixing before plunging below the water surface near the intersection of this arm with the reservoir’s main stem. Model results are being used to guide management decisions related to inflows to the reservoir from a relic mining site that is also a USEPA Superfund site.
    publisherASCE
    titleEvaluation of Hydrodynamic Mixing in an Afterbay Reservoir
    typeJournal Article
    journal volume149
    journal issue10
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/JOEEDU.EEENG-7287
    journal fristpage04023068-1
    journal lastpage04023068-14
    page14
    treeJournal of Environmental Engineering:;2023:;Volume ( 149 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian