YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Role of National Conditions in Occupational Fatal Accidents in the Construction Industry Using Interpretable Machine Learning Approach

    Source: Journal of Management in Engineering:;2023:;Volume ( 039 ):;issue: 006::page 04023037-1
    Author:
    Kerim Koc
    DOI: 10.1061/JMENEA.MEENG-5516
    Publisher: ASCE
    Abstract: Current national occupational safety and health (OSH) initiatives follow reactive approaches, i.e., if it breaks, fix it. Existing accounts, however, failed to improve national OSH performances substantially, which imposes the need for an in-depth and proactive (fix it so it will not break) investigation of national occupational fatality risks. Despite many studies examining the fatality risk of workers based on project-, company-, and/or behavior-related factors, the role of national conditions on the countrywide fatality risk of workers has not been explored. The present research leverages the national statistics of Turkey to examine their influence on construction workers’ fatality risk through a machine learning–based prediction model. Several widely used machine learning methods were adopted for determining whether the upcoming month poses a significant fatality risk for construction workers or not based on national statistics of the previous month. According to analysis results, the gradient boosting decision tree algorithm yielded the highest prediction performance in terms of f1-score. The recently developed game theory–based Shapley Additive Explanations (SHAP) algorithm was used to identify whether and how national conditions affect countrywide fatality risk of construction workers. Findings illustrate that the share of the construction sector in employment, market demand, and labor shortage are the most significant national factors in determining the fatality risk. SHAP summary and SHAP dependence plots are further presented to provide decision makers with a clearer understanding of hidden relationships between fatality risk and national conditions. In addition, a framework that can be practically used by policy makers and governmental authorities is developed to help minimize national occupational fatality risk. Overall, predicting national fatality risk in the industry and identifying the national precursors of occupational fatalities contribute to the development of macrolevel safety improvements based on country-specific conditions.
    • Download: (2.944Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Role of National Conditions in Occupational Fatal Accidents in the Construction Industry Using Interpretable Machine Learning Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293982
    Collections
    • Journal of Management in Engineering

    Show full item record

    contributor authorKerim Koc
    date accessioned2023-11-27T23:57:37Z
    date available2023-11-27T23:57:37Z
    date issued8/4/2023 12:00:00 AM
    date issued2023-08-04
    identifier otherJMENEA.MEENG-5516.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293982
    description abstractCurrent national occupational safety and health (OSH) initiatives follow reactive approaches, i.e., if it breaks, fix it. Existing accounts, however, failed to improve national OSH performances substantially, which imposes the need for an in-depth and proactive (fix it so it will not break) investigation of national occupational fatality risks. Despite many studies examining the fatality risk of workers based on project-, company-, and/or behavior-related factors, the role of national conditions on the countrywide fatality risk of workers has not been explored. The present research leverages the national statistics of Turkey to examine their influence on construction workers’ fatality risk through a machine learning–based prediction model. Several widely used machine learning methods were adopted for determining whether the upcoming month poses a significant fatality risk for construction workers or not based on national statistics of the previous month. According to analysis results, the gradient boosting decision tree algorithm yielded the highest prediction performance in terms of f1-score. The recently developed game theory–based Shapley Additive Explanations (SHAP) algorithm was used to identify whether and how national conditions affect countrywide fatality risk of construction workers. Findings illustrate that the share of the construction sector in employment, market demand, and labor shortage are the most significant national factors in determining the fatality risk. SHAP summary and SHAP dependence plots are further presented to provide decision makers with a clearer understanding of hidden relationships between fatality risk and national conditions. In addition, a framework that can be practically used by policy makers and governmental authorities is developed to help minimize national occupational fatality risk. Overall, predicting national fatality risk in the industry and identifying the national precursors of occupational fatalities contribute to the development of macrolevel safety improvements based on country-specific conditions.
    publisherASCE
    titleRole of National Conditions in Occupational Fatal Accidents in the Construction Industry Using Interpretable Machine Learning Approach
    typeJournal Article
    journal volume39
    journal issue6
    journal titleJournal of Management in Engineering
    identifier doi10.1061/JMENEA.MEENG-5516
    journal fristpage04023037-1
    journal lastpage04023037-22
    page22
    treeJournal of Management in Engineering:;2023:;Volume ( 039 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian