YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diffusion Behavior of Rejuvenator and Its Influences on the Interfacial Properties of Recycled Asphalt Mixtures by Molecular Dynamics Simulations and Experiments

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 011::page 04023402-1
    Author:
    Fuqiang Dong
    ,
    Peixing Yang
    ,
    Xin Yu
    ,
    Shiyu Wang
    ,
    Yuanzhe Zu
    ,
    Jinli Lu
    DOI: 10.1061/JMCEE7.MTENG-16117
    Publisher: ASCE
    Abstract: In hot in-place recycled (HIR) technology, the in-place mixing paving construction method suffers from the problems of low mixing temperature and short mixing time, which lead to incomplete rejuvenator diffusion in waste asphalt binder. Quantitative evaluation of rejuvenator diffusion degree and the corresponding microscopic characteristics are beneficial in guiding HIR construction technology. In this study, the interface model of virgin asphalt, rejuvenator, and aged asphalt was established through molecular dynamics (MD) simulations. Rejuvenator diffusion rates at the virgin–aged asphalt interface (VAAI) at different temperatures were investigated. The results showed that temperature increased rejuvenator diffusion rate. Relative concentrations at different diffusion times were used to quantitatively evaluate rejuvenator diffusion degrees at the interface. The results showed that diffusion degree and uniformity of rejuvenators could be improved by the passage of time. At the same time, the modulus and stress–strain curves of various VAAI models with different diffusion degrees were drawn. The results showed that increase of diffusion degree increased modulus and maximum tensile stress and strain of VAAI; that is, stability at high temperature and crack resistance at low temperature were improved. At low rejuvenator diffusion degrees, rejuvenators accumulated at VAAI, which had a negative effect on reclaimed asphalt performance. According to MD simulation results and site conditions, it was suggested that the HIR technology construction temperature had to remain above 428 K. At the same time, it was suggested that rejuvenator diffusion degree had to be increased to improve road performance.
    • Download: (5.350Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diffusion Behavior of Rejuvenator and Its Influences on the Interfacial Properties of Recycled Asphalt Mixtures by Molecular Dynamics Simulations and Experiments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293942
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorFuqiang Dong
    contributor authorPeixing Yang
    contributor authorXin Yu
    contributor authorShiyu Wang
    contributor authorYuanzhe Zu
    contributor authorJinli Lu
    date accessioned2023-11-27T23:54:37Z
    date available2023-11-27T23:54:37Z
    date issued8/26/2023 12:00:00 AM
    date issued2023-08-26
    identifier otherJMCEE7.MTENG-16117.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293942
    description abstractIn hot in-place recycled (HIR) technology, the in-place mixing paving construction method suffers from the problems of low mixing temperature and short mixing time, which lead to incomplete rejuvenator diffusion in waste asphalt binder. Quantitative evaluation of rejuvenator diffusion degree and the corresponding microscopic characteristics are beneficial in guiding HIR construction technology. In this study, the interface model of virgin asphalt, rejuvenator, and aged asphalt was established through molecular dynamics (MD) simulations. Rejuvenator diffusion rates at the virgin–aged asphalt interface (VAAI) at different temperatures were investigated. The results showed that temperature increased rejuvenator diffusion rate. Relative concentrations at different diffusion times were used to quantitatively evaluate rejuvenator diffusion degrees at the interface. The results showed that diffusion degree and uniformity of rejuvenators could be improved by the passage of time. At the same time, the modulus and stress–strain curves of various VAAI models with different diffusion degrees were drawn. The results showed that increase of diffusion degree increased modulus and maximum tensile stress and strain of VAAI; that is, stability at high temperature and crack resistance at low temperature were improved. At low rejuvenator diffusion degrees, rejuvenators accumulated at VAAI, which had a negative effect on reclaimed asphalt performance. According to MD simulation results and site conditions, it was suggested that the HIR technology construction temperature had to remain above 428 K. At the same time, it was suggested that rejuvenator diffusion degree had to be increased to improve road performance.
    publisherASCE
    titleDiffusion Behavior of Rejuvenator and Its Influences on the Interfacial Properties of Recycled Asphalt Mixtures by Molecular Dynamics Simulations and Experiments
    typeJournal Article
    journal volume35
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-16117
    journal fristpage04023402-1
    journal lastpage04023402-15
    page15
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian