YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study of Ultralow-Cycle Fatigue of Iron-Based SMA in Triaxial Stress States

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 010::page 04023347-1
    Author:
    Can-Xing Qiu
    ,
    Ai-Fang Zhang
    ,
    Yuan-Zuo Wang
    ,
    Xiu-Li Du
    DOI: 10.1061/JMCEE7.MTENG-16115
    Publisher: ASCE
    Abstract: An experimental study of the ultralow-cycle fatigue of iron-based shape memory alloy (Fe-SMA) in triaxial stress states was conducted. Monotonic tensile tests of specimens with different geometries were carried out to investigate monotonic mechanical properties of Fe-SMA under various triaxial stress states in terms of stress triaxiality and Lode angle, followed by ultralow cyclic tests (cycles <100) which were carried out to study the ultralow-cycle fatigue of Fe-SMA under various loading systems at triaxial stress states. Fe-SMA had nonlinear combined hardening under cyclic loading. A parameter identification method based on an optimization-based algorithm was established to calibrate the constitutive model of Fe-SMA. The initiation and propagation of cracks in the fracture process were different for Fe-SMA under monotonic and cyclic loading. The influences of stress triaxiality and Lode angle on the fracture ductility of Fe-SMA were investigated. An ultralow cyclic fracture criterion, the cyclic Bai–Wierzbicki (CBW) criterion, was established based on the accumulation of ductile damage and the attenuation of ductile damage threshold. The applicability of the calibrated constitutive model and the proposed fracture criterion was validated by simulating the ultralow-cycle fatigue and fracture failures of Fe-SMA.
    • Download: (2.618Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study of Ultralow-Cycle Fatigue of Iron-Based SMA in Triaxial Stress States

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293941
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorCan-Xing Qiu
    contributor authorAi-Fang Zhang
    contributor authorYuan-Zuo Wang
    contributor authorXiu-Li Du
    date accessioned2023-11-27T23:54:25Z
    date available2023-11-27T23:54:25Z
    date issued7/24/2023 12:00:00 AM
    date issued2023-07-24
    identifier otherJMCEE7.MTENG-16115.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293941
    description abstractAn experimental study of the ultralow-cycle fatigue of iron-based shape memory alloy (Fe-SMA) in triaxial stress states was conducted. Monotonic tensile tests of specimens with different geometries were carried out to investigate monotonic mechanical properties of Fe-SMA under various triaxial stress states in terms of stress triaxiality and Lode angle, followed by ultralow cyclic tests (cycles <100) which were carried out to study the ultralow-cycle fatigue of Fe-SMA under various loading systems at triaxial stress states. Fe-SMA had nonlinear combined hardening under cyclic loading. A parameter identification method based on an optimization-based algorithm was established to calibrate the constitutive model of Fe-SMA. The initiation and propagation of cracks in the fracture process were different for Fe-SMA under monotonic and cyclic loading. The influences of stress triaxiality and Lode angle on the fracture ductility of Fe-SMA were investigated. An ultralow cyclic fracture criterion, the cyclic Bai–Wierzbicki (CBW) criterion, was established based on the accumulation of ductile damage and the attenuation of ductile damage threshold. The applicability of the calibrated constitutive model and the proposed fracture criterion was validated by simulating the ultralow-cycle fatigue and fracture failures of Fe-SMA.
    publisherASCE
    titleStudy of Ultralow-Cycle Fatigue of Iron-Based SMA in Triaxial Stress States
    typeJournal Article
    journal volume35
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-16115
    journal fristpage04023347-1
    journal lastpage04023347-12
    page12
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian