YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Factors Influencing the Compaction Characteristic of Recycled Aggregate Asphalt Mixture

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 009::page 04023293-1
    Author:
    Jing Hu
    ,
    Lin Bin
    ,
    Qibo Huang
    ,
    Pengfei Liu
    DOI: 10.1061/JMCEE7.MTENG-15800
    Publisher: ASCE
    Abstract: Aggregate and air void distribution determined by compaction commonly affects damage appearance and development inside asphalt mixture and is related to asphalt pavement durability and quality. The main objective of this study is to investigate the recycled aggregate (RA) effect on asphalt mixture compaction behavior under different engineering conditions. First, the aggregate fragmentation caused by compaction effort was simulated using the superpave gyratory compactor. In this regard, the influences of aggregate type and RA content were investigated. Second, the indoor experiment scheme was determined using the Taguchi method to obtain compaction data of recycled aggregate asphalt mixture (RAAM). Finally, a genetic algorithm-based backpropagation (GA-BP) artificial neural network (ANN) model using the 216 data sets of the indoor experiment was developed to predict and explore the relative contribution of engineering-conditions-related parameters to RAAM compaction difficulty. The results showed that the aggregate particles suffer fragmentation mainly in the early compaction of recycled aggregate asphalt mixture. The effect of RA on aggregate fragmentation during the compaction process is not statistically significant. The 10-14-1 GA-based BP ANN model developed in this study is an effective method in predicting the compaction energy consumption of RAAM with a correlation coefficient (R2) of 98.59% and a mean-squared error value of 0.6266. The gradation shape, NMAS, FI3d, AI3d, and T3d and incorporated content of recycled aggregate have a considerable positive correlation with the compaction difficulty. The limitation of this study is that the compaction difficulty prediction model is developed according to indoor test data. Therefore, the model’s applicability to field pavement projects required further practical verification.
    • Download: (8.475Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Factors Influencing the Compaction Characteristic of Recycled Aggregate Asphalt Mixture

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293895
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJing Hu
    contributor authorLin Bin
    contributor authorQibo Huang
    contributor authorPengfei Liu
    date accessioned2023-11-27T23:51:27Z
    date available2023-11-27T23:51:27Z
    date issued6/21/2023 12:00:00 AM
    date issued2023-06-21
    identifier otherJMCEE7.MTENG-15800.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293895
    description abstractAggregate and air void distribution determined by compaction commonly affects damage appearance and development inside asphalt mixture and is related to asphalt pavement durability and quality. The main objective of this study is to investigate the recycled aggregate (RA) effect on asphalt mixture compaction behavior under different engineering conditions. First, the aggregate fragmentation caused by compaction effort was simulated using the superpave gyratory compactor. In this regard, the influences of aggregate type and RA content were investigated. Second, the indoor experiment scheme was determined using the Taguchi method to obtain compaction data of recycled aggregate asphalt mixture (RAAM). Finally, a genetic algorithm-based backpropagation (GA-BP) artificial neural network (ANN) model using the 216 data sets of the indoor experiment was developed to predict and explore the relative contribution of engineering-conditions-related parameters to RAAM compaction difficulty. The results showed that the aggregate particles suffer fragmentation mainly in the early compaction of recycled aggregate asphalt mixture. The effect of RA on aggregate fragmentation during the compaction process is not statistically significant. The 10-14-1 GA-based BP ANN model developed in this study is an effective method in predicting the compaction energy consumption of RAAM with a correlation coefficient (R2) of 98.59% and a mean-squared error value of 0.6266. The gradation shape, NMAS, FI3d, AI3d, and T3d and incorporated content of recycled aggregate have a considerable positive correlation with the compaction difficulty. The limitation of this study is that the compaction difficulty prediction model is developed according to indoor test data. Therefore, the model’s applicability to field pavement projects required further practical verification.
    publisherASCE
    titleEvaluation of Factors Influencing the Compaction Characteristic of Recycled Aggregate Asphalt Mixture
    typeJournal Article
    journal volume35
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-15800
    journal fristpage04023293-1
    journal lastpage04023293-18
    page18
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian