YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Relative Compatibility Analysis of Aggregate-Binder Systems in Arkansas against Stripping

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 009::page 04023285-1
    Author:
    Mohammad Najmush Sakib Oyan
    ,
    Zahid Hossain
    ,
    Md. Rafiue Islam
    ,
    Andrew Braham
    ,
    Sanghyun Chun
    DOI: 10.1061/JMCEE7.MTENG-15772
    Publisher: ASCE
    Abstract: Compatibility holds great importance because it can predict the overall performance of asphalt mixtures. Incompatible aggregate-binder duos can result in a weak and friable mix as well as increase mixtures’ stripping potential. Being unaware, local agencies and contractors often struggle with premature pavement failure, which consequently places unexpected strain on the budget. Thus, this study assessed the compatibility among 18 asphalt binders with a performance grade (PG) of PG 64-22, PG 70-22, and PG 76-22, each collected from six different refineries; and eight different types of aggregates (sandstone, novaculite, limestone, and dolomite, each collected from two different quarries). Viscosity, penetration, pH, and work of cohesion values of binders were used to develop a binder ranking system. Similarly, the aggregates were ranked based on physical (specific gravity and absorption), durability (abrasion resistance and soundness), and chemical (pH and surface free energy) properties. Overall relative rankings of aggregates and binders were also provided by assigning weight factors to different tested parameters. A total of 144 aggregate-binder mixture systems were ranked based on their dry and wet work of adhesion values as well as Texas boiling test results. The compatibility ratio (CR) was also computed, and each of the systems was designated A, B, C, or D based on their relative CR values. Upon analysis, three binders (S2B2, S3B1, and S4B1) and three aggregates (DM2, LS2, and DM1) were designated as the most preferable construction materials. CR values predicted LS2, DM1, and DM2 mixtures as the most compatible mixtures. SS2, LS1, and DM2 mixtures showed the highest stripping resistance in the Texas boiling test. These databases are expected to help the agency and asphalt producers to select compatible binders and aggregates for producing durable asphalt concrete. This study covered a wide variety of aggregates and asphalt binders prevalent in but not limited to Arkansas. A database developed under this project was based on observed individual aggregates’ and binders’ performances as well as their combined performances. The information provided in this study will help contractors and agencies to choose the most appropriate aggregate-binder system within their reach for producing quality asphalt mixtures. By knowing the rankings, state agencies can adjust project budgets and assign timely rehabilitation due to the usage of less compatible aggregate-binder systems. Contractors can tweak the existing mix design if they must use local but inferior materials. This ranking will also help them to select project-specific materials depending on the project’s significance. The refineries as well will have the opportunity to improve their products to be more compatible with local materials.
    • Download: (5.225Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Relative Compatibility Analysis of Aggregate-Binder Systems in Arkansas against Stripping

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293888
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMohammad Najmush Sakib Oyan
    contributor authorZahid Hossain
    contributor authorMd. Rafiue Islam
    contributor authorAndrew Braham
    contributor authorSanghyun Chun
    date accessioned2023-11-27T23:50:53Z
    date available2023-11-27T23:50:53Z
    date issued6/18/2023 12:00:00 AM
    date issued2023-06-18
    identifier otherJMCEE7.MTENG-15772.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293888
    description abstractCompatibility holds great importance because it can predict the overall performance of asphalt mixtures. Incompatible aggregate-binder duos can result in a weak and friable mix as well as increase mixtures’ stripping potential. Being unaware, local agencies and contractors often struggle with premature pavement failure, which consequently places unexpected strain on the budget. Thus, this study assessed the compatibility among 18 asphalt binders with a performance grade (PG) of PG 64-22, PG 70-22, and PG 76-22, each collected from six different refineries; and eight different types of aggregates (sandstone, novaculite, limestone, and dolomite, each collected from two different quarries). Viscosity, penetration, pH, and work of cohesion values of binders were used to develop a binder ranking system. Similarly, the aggregates were ranked based on physical (specific gravity and absorption), durability (abrasion resistance and soundness), and chemical (pH and surface free energy) properties. Overall relative rankings of aggregates and binders were also provided by assigning weight factors to different tested parameters. A total of 144 aggregate-binder mixture systems were ranked based on their dry and wet work of adhesion values as well as Texas boiling test results. The compatibility ratio (CR) was also computed, and each of the systems was designated A, B, C, or D based on their relative CR values. Upon analysis, three binders (S2B2, S3B1, and S4B1) and three aggregates (DM2, LS2, and DM1) were designated as the most preferable construction materials. CR values predicted LS2, DM1, and DM2 mixtures as the most compatible mixtures. SS2, LS1, and DM2 mixtures showed the highest stripping resistance in the Texas boiling test. These databases are expected to help the agency and asphalt producers to select compatible binders and aggregates for producing durable asphalt concrete. This study covered a wide variety of aggregates and asphalt binders prevalent in but not limited to Arkansas. A database developed under this project was based on observed individual aggregates’ and binders’ performances as well as their combined performances. The information provided in this study will help contractors and agencies to choose the most appropriate aggregate-binder system within their reach for producing quality asphalt mixtures. By knowing the rankings, state agencies can adjust project budgets and assign timely rehabilitation due to the usage of less compatible aggregate-binder systems. Contractors can tweak the existing mix design if they must use local but inferior materials. This ranking will also help them to select project-specific materials depending on the project’s significance. The refineries as well will have the opportunity to improve their products to be more compatible with local materials.
    publisherASCE
    titleRelative Compatibility Analysis of Aggregate-Binder Systems in Arkansas against Stripping
    typeJournal Article
    journal volume35
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-15772
    journal fristpage04023285-1
    journal lastpage04023285-14
    page14
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian