YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study on the Adhesion Characteristics of Asphalt-Aggregate Interface in Cold Recycled Asphalt Mixtures

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 009::page 04023283-1
    Author:
    Qiang Li
    ,
    Jiaqing Wang
    ,
    Shijie Song
    ,
    Ruijun Wang
    ,
    Jiwang Jiang
    ,
    Chaojie Yan
    DOI: 10.1061/JMCEE7.MTENG-15572
    Publisher: ASCE
    Abstract: The reclaimed asphalt pavement materials have been used for sustainable cold-recycling, significantly benefiting air quality and resource conservation, while its microscale interface properties greatly affected road performance during the cold-recycling processes. In this investigation, the cold recycled asphalt mixtures were prepared with different mixing proportions, considering the effects of cement content and mixing water amount. The adhesion characteristics of the asphalt-aggregate interface in different cold recycled asphalt mixtures have been comprehensively investigated based on the atomic force microscopic (AFM). The microscale morphology and the adhesion properties, including roughness, inclination angle, adhesion force, Derjaguin–Muller–Toporov (DMT) modulus, and dissipated energy were evaluated at the interface and noninterface regions. The micromorphology results showed that the addition of cement could enhance the roughness and inclination in interface regions. In addition, the content of mixed water showed the most significant effect when the water amount was 80%. The results showed that the adhesion force, DMT modulus, and dissipated energy increased with the addition of cement, indicating that the cement could improve the microscale mechanical properties of cold recycled asphalt mixtures. With the increase of mixing water content, the adhesion characteristics showed varied results, and the optimum water content of 80% contributed to the adhesive properties. In addition, the adhesion force, DMT modulus, and dissipated energy were all higher in the interface region by comparing with the noninterface region. The correlations between the macroscale splitting tensile strength and microscale adhesion characteristics of cold recycled asphalt mixtures were established.
    • Download: (5.985Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study on the Adhesion Characteristics of Asphalt-Aggregate Interface in Cold Recycled Asphalt Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293852
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorQiang Li
    contributor authorJiaqing Wang
    contributor authorShijie Song
    contributor authorRuijun Wang
    contributor authorJiwang Jiang
    contributor authorChaojie Yan
    date accessioned2023-11-27T23:48:01Z
    date available2023-11-27T23:48:01Z
    date issued6/18/2023 12:00:00 AM
    date issued2023-06-18
    identifier otherJMCEE7.MTENG-15572.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293852
    description abstractThe reclaimed asphalt pavement materials have been used for sustainable cold-recycling, significantly benefiting air quality and resource conservation, while its microscale interface properties greatly affected road performance during the cold-recycling processes. In this investigation, the cold recycled asphalt mixtures were prepared with different mixing proportions, considering the effects of cement content and mixing water amount. The adhesion characteristics of the asphalt-aggregate interface in different cold recycled asphalt mixtures have been comprehensively investigated based on the atomic force microscopic (AFM). The microscale morphology and the adhesion properties, including roughness, inclination angle, adhesion force, Derjaguin–Muller–Toporov (DMT) modulus, and dissipated energy were evaluated at the interface and noninterface regions. The micromorphology results showed that the addition of cement could enhance the roughness and inclination in interface regions. In addition, the content of mixed water showed the most significant effect when the water amount was 80%. The results showed that the adhesion force, DMT modulus, and dissipated energy increased with the addition of cement, indicating that the cement could improve the microscale mechanical properties of cold recycled asphalt mixtures. With the increase of mixing water content, the adhesion characteristics showed varied results, and the optimum water content of 80% contributed to the adhesive properties. In addition, the adhesion force, DMT modulus, and dissipated energy were all higher in the interface region by comparing with the noninterface region. The correlations between the macroscale splitting tensile strength and microscale adhesion characteristics of cold recycled asphalt mixtures were established.
    publisherASCE
    titleStudy on the Adhesion Characteristics of Asphalt-Aggregate Interface in Cold Recycled Asphalt Mixtures
    typeJournal Article
    journal volume35
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-15572
    journal fristpage04023283-1
    journal lastpage04023283-16
    page16
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian