YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Basic Mechanical Properties of Laminated Flattened-Bamboo Composite: An Experimental and Parametric Investigation

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 008::page 04023258-1
    Author:
    Dong Yang
    ,
    Haitao Li
    ,
    Rodolfo Lorenzo
    ,
    Conggan Yuan
    ,
    Chaokun Hong
    ,
    Yue Chen
    DOI: 10.1061/JMCEE7.MTENG-15549
    Publisher: ASCE
    Abstract: To reduce carbon emissions in the construction industry, more and more researchers have paid attention to engineered bamboo, a natural and green material. This research focused on laminated flattened-bamboo (LFB), a new bamboo composite produced by the advanced non-notched flattened-bamboo technology which can improve the utilization rate of bamboo and reduce production costs by reducing the use of adhesive compared with the gluing process of conventional bamboo laminates. The basic mechanical properties under compression, tension, three-point bending, and shearing of LFB in three orthogonal directions were mainly studied. Experimental results showed that compressive and tensile strength (modulus) along the grain direction were 56.2 MPa (9,542.7 MPa) and 106.9 MPa (10,151.1 MPa), respectively; in the radial direction were 43.1 MPa (580.9 MPa) and 1.8 MPa (1,459.6 MPa), respectively; in the tangential direction were 19.0 MPa (1,124.5 MPa) and 4.3 MPa (5,112.5 MPa), respectively; the mean bending strength (modulus) was 80.8 MPa (8,076.8 MPa), and the shear strength (modulus) was 17.3 MPa (1,878.8 MPa). The measured properties were comparable to that of other structural bio-based materials, showing LFB has the potential to be an alternative to timber in future construction applications. The modulus and Poisson’s ratio was analyzed, and the result showed that LFB could be regarded as orthotropic material approximately. The failure types under various loading conditions were summarized. Based on the Ramberg Osgood relation, the stress-strain models of LFB composite under compression, tension, and shearing were proposed, and the characteristic value of ultimate strength and elastic modulus was determined by parametric analysis.
    • Download: (3.942Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Basic Mechanical Properties of Laminated Flattened-Bamboo Composite: An Experimental and Parametric Investigation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293848
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorDong Yang
    contributor authorHaitao Li
    contributor authorRodolfo Lorenzo
    contributor authorConggan Yuan
    contributor authorChaokun Hong
    contributor authorYue Chen
    date accessioned2023-11-27T23:47:39Z
    date available2023-11-27T23:47:39Z
    date issued5/31/2023 12:00:00 AM
    date issued2023-05-31
    identifier otherJMCEE7.MTENG-15549.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293848
    description abstractTo reduce carbon emissions in the construction industry, more and more researchers have paid attention to engineered bamboo, a natural and green material. This research focused on laminated flattened-bamboo (LFB), a new bamboo composite produced by the advanced non-notched flattened-bamboo technology which can improve the utilization rate of bamboo and reduce production costs by reducing the use of adhesive compared with the gluing process of conventional bamboo laminates. The basic mechanical properties under compression, tension, three-point bending, and shearing of LFB in three orthogonal directions were mainly studied. Experimental results showed that compressive and tensile strength (modulus) along the grain direction were 56.2 MPa (9,542.7 MPa) and 106.9 MPa (10,151.1 MPa), respectively; in the radial direction were 43.1 MPa (580.9 MPa) and 1.8 MPa (1,459.6 MPa), respectively; in the tangential direction were 19.0 MPa (1,124.5 MPa) and 4.3 MPa (5,112.5 MPa), respectively; the mean bending strength (modulus) was 80.8 MPa (8,076.8 MPa), and the shear strength (modulus) was 17.3 MPa (1,878.8 MPa). The measured properties were comparable to that of other structural bio-based materials, showing LFB has the potential to be an alternative to timber in future construction applications. The modulus and Poisson’s ratio was analyzed, and the result showed that LFB could be regarded as orthotropic material approximately. The failure types under various loading conditions were summarized. Based on the Ramberg Osgood relation, the stress-strain models of LFB composite under compression, tension, and shearing were proposed, and the characteristic value of ultimate strength and elastic modulus was determined by parametric analysis.
    publisherASCE
    titleBasic Mechanical Properties of Laminated Flattened-Bamboo Composite: An Experimental and Parametric Investigation
    typeJournal Article
    journal volume35
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-15549
    journal fristpage04023258-1
    journal lastpage04023258-13
    page13
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian