YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Magnesium Ions on the Mechanical Properties of Soil Reinforced by Microbially Induced Carbonate Precipitation

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 011::page 04023413-1
    Author:
    Jie Yuan
    ,
    Yuanyuan Li
    ,
    Yi Shan
    ,
    Huawei Tong
    ,
    Jitong Zhao
    DOI: 10.1061/JMCEE7.MTENG-15080
    Publisher: ASCE
    Abstract: Microbially induced carbonate precipitation (MICP) is a new foundation treatment technology, which can improve the mechanical properties of soil. In this study, sand specimens containing different magnesium/calcium ion concentration ratios (Mg2+/Ca2+=0/0.5, 0.1/0.4, 0.2/0.3, 0.25/0.25, 0.4/0.1, and 0.5/0) were selected. Moreover, the effects of magnesium ions on the mechanical properties and mechanism of the biocemented sand were explored by oedometer tests, unconfined compressive strength tests, cyclic triaxial tests, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results showed that when the Mg2+ concentration is low, with increasing Mg2+/Ca2+, the compressibility of the biocemented sand decreases, the unconfined compressive strength increases, and the antiliquefaction performance improves. When Mg2+/Ca2+=0.2/0.3, the sand specimen showed the worst compressibility and the best unconfined compressive strength and antiliquefaction performance. When the Mg2+ concentration was high, all the mechanical properties of the specimen were weakened. Low Mg2+ concentrations promote the formation of aragonite, whereas high Mg2+ concentrations promote the formation of dolomite. In addition, the SEM and XRD results verified the effect of Mg2+ on the crystal morphology and composition. This study showed that low Mg2+ concentrations can be added to improve the mechanical properties of the sand specimen and achieve a better reinforcement effect when using MICP to consolidate the soil.
    • Download: (5.182Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Magnesium Ions on the Mechanical Properties of Soil Reinforced by Microbially Induced Carbonate Precipitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293775
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJie Yuan
    contributor authorYuanyuan Li
    contributor authorYi Shan
    contributor authorHuawei Tong
    contributor authorJitong Zhao
    date accessioned2023-11-27T23:41:26Z
    date available2023-11-27T23:41:26Z
    date issued8/30/2023 12:00:00 AM
    date issued2023-08-30
    identifier otherJMCEE7.MTENG-15080.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293775
    description abstractMicrobially induced carbonate precipitation (MICP) is a new foundation treatment technology, which can improve the mechanical properties of soil. In this study, sand specimens containing different magnesium/calcium ion concentration ratios (Mg2+/Ca2+=0/0.5, 0.1/0.4, 0.2/0.3, 0.25/0.25, 0.4/0.1, and 0.5/0) were selected. Moreover, the effects of magnesium ions on the mechanical properties and mechanism of the biocemented sand were explored by oedometer tests, unconfined compressive strength tests, cyclic triaxial tests, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results showed that when the Mg2+ concentration is low, with increasing Mg2+/Ca2+, the compressibility of the biocemented sand decreases, the unconfined compressive strength increases, and the antiliquefaction performance improves. When Mg2+/Ca2+=0.2/0.3, the sand specimen showed the worst compressibility and the best unconfined compressive strength and antiliquefaction performance. When the Mg2+ concentration was high, all the mechanical properties of the specimen were weakened. Low Mg2+ concentrations promote the formation of aragonite, whereas high Mg2+ concentrations promote the formation of dolomite. In addition, the SEM and XRD results verified the effect of Mg2+ on the crystal morphology and composition. This study showed that low Mg2+ concentrations can be added to improve the mechanical properties of the sand specimen and achieve a better reinforcement effect when using MICP to consolidate the soil.
    publisherASCE
    titleEffect of Magnesium Ions on the Mechanical Properties of Soil Reinforced by Microbially Induced Carbonate Precipitation
    typeJournal Article
    journal volume35
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-15080
    journal fristpage04023413-1
    journal lastpage04023413-13
    page13
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian