YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sustainable Lignin to Enhance Engineering Properties of Unsaturated Expansive Subgrade Soils

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 008::page 04023259-1
    Author:
    Debojit Sarker
    ,
    Omar Shahrear Apu
    ,
    Narendra Kumar
    ,
    Jay X. Wang
    ,
    Joan G. Lynam
    DOI: 10.1061/JMCEE7.MTENG-15008
    Publisher: ASCE
    Abstract: New ways to apply sustainable materials, such as biomass components, are essential for reducing dependence on fossil fuels. This work investigated the engineering properties of unsaturated expansive subgrade soils stabilized by bio-based energy coproducts containing lignin. Lignin is a waste by-product of the paper and pulp industry that is frequently burned. Highway subgrade could consume lignin as an environmentally benign, low-cost, and energy-efficient chemical substance for soil stabilization. Swell and shrink behavior of expansive subgrade soils complicates highway construction and causes damage to existing highways. However, research on the hydromechanical properties and volume change behavior of lignin-stabilized expansive soil is limited, and better insight is required into its unsaturated behavior for safe and economical pavement design practices. In this research, a series of geotechnical laboratory tests were conducted to characterize expansive subgrade soils treated with lignin by determining the Atterberg limits, compaction and consolidation behaviors, swelling characteristics, and water retention properties. The mechanisms influencing the changes in engineering properties of lignin-treated expansive soils were further investigated using soil pH, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analysis. The study shows that the optimal lignin content contributed to an acceptable degree of soil stabilization. The lignin-based cementing material effectively bonds soil particles together and fills pores, thereby preventing water infiltration into the soil and reducing the swell–shrink potential of stabilized soils.
    • Download: (2.099Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sustainable Lignin to Enhance Engineering Properties of Unsaturated Expansive Subgrade Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293766
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorDebojit Sarker
    contributor authorOmar Shahrear Apu
    contributor authorNarendra Kumar
    contributor authorJay X. Wang
    contributor authorJoan G. Lynam
    date accessioned2023-11-27T23:40:47Z
    date available2023-11-27T23:40:47Z
    date issued5/31/2023 12:00:00 AM
    date issued2023-05-31
    identifier otherJMCEE7.MTENG-15008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293766
    description abstractNew ways to apply sustainable materials, such as biomass components, are essential for reducing dependence on fossil fuels. This work investigated the engineering properties of unsaturated expansive subgrade soils stabilized by bio-based energy coproducts containing lignin. Lignin is a waste by-product of the paper and pulp industry that is frequently burned. Highway subgrade could consume lignin as an environmentally benign, low-cost, and energy-efficient chemical substance for soil stabilization. Swell and shrink behavior of expansive subgrade soils complicates highway construction and causes damage to existing highways. However, research on the hydromechanical properties and volume change behavior of lignin-stabilized expansive soil is limited, and better insight is required into its unsaturated behavior for safe and economical pavement design practices. In this research, a series of geotechnical laboratory tests were conducted to characterize expansive subgrade soils treated with lignin by determining the Atterberg limits, compaction and consolidation behaviors, swelling characteristics, and water retention properties. The mechanisms influencing the changes in engineering properties of lignin-treated expansive soils were further investigated using soil pH, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analysis. The study shows that the optimal lignin content contributed to an acceptable degree of soil stabilization. The lignin-based cementing material effectively bonds soil particles together and fills pores, thereby preventing water infiltration into the soil and reducing the swell–shrink potential of stabilized soils.
    publisherASCE
    titleSustainable Lignin to Enhance Engineering Properties of Unsaturated Expansive Subgrade Soils
    typeJournal Article
    journal volume35
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-15008
    journal fristpage04023259-1
    journal lastpage04023259-11
    page11
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian