YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strength-Gain Characteristics and Swelling Response of Steel Slag and Steel Slag–Fly Ash Mixtures

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 008::page 04023223-1
    Author:
    Irem Zeynep Yildirim
    ,
    Umashankar Balunaini
    ,
    Monica Prezzi
    DOI: 10.1061/JMCEE7.MTENG-14823
    Publisher: ASCE
    Abstract: The shear strength and stiffness characteristics of steel slag indicate that it can potentially be utilized as a competent base/subbase material of bound and unbound pavement layers. However, concerns with respect to the utilization of steel slag remain due to its long-term swelling, corrosivity, and leaching characteristics. In this study, long-term swelling and corrosivity tests were performed on basic-oxygen-furnace steel slag (BOFSS) and electric-arc-furnace ladle steel slag [EAF(L)SS] generated in Indiana, USA. In order to reduce the 1D swelling strains of these slags, 5%, 10%, and 20% Class C fly ash (CCFA) and 10% ground rubber replacement ratios were used to prepare steel slag mixtures for testing. The improvement due to CCFA replacement was evaluated by performing unconfined compression and long-term swelling tests on selected steel slag–CCFA mixtures. The seven-day unconfined compression strengths of 90% EAF(L)SS + 10% CCFA and 90% BOFSS + 10% CCFA mixtures were 2,387 and 3,768 kPa, respectively. After nine months of monitoring, the maximum 1D swelling strains of soaked samples of BOFSS and EAF(L)SS mixtures prepared with 10% CCFA replacement were 0.1% or less. The unconfined compression and swelling test results for the steel slag–CCFA mixtures indicated superior strength gain characteristics and negligible swelling strains with time than for steel slags.
    • Download: (6.272Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strength-Gain Characteristics and Swelling Response of Steel Slag and Steel Slag–Fly Ash Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293749
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorIrem Zeynep Yildirim
    contributor authorUmashankar Balunaini
    contributor authorMonica Prezzi
    date accessioned2023-11-27T23:39:34Z
    date available2023-11-27T23:39:34Z
    date issued5/22/2023 12:00:00 AM
    date issued2023-05-22
    identifier otherJMCEE7.MTENG-14823.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293749
    description abstractThe shear strength and stiffness characteristics of steel slag indicate that it can potentially be utilized as a competent base/subbase material of bound and unbound pavement layers. However, concerns with respect to the utilization of steel slag remain due to its long-term swelling, corrosivity, and leaching characteristics. In this study, long-term swelling and corrosivity tests were performed on basic-oxygen-furnace steel slag (BOFSS) and electric-arc-furnace ladle steel slag [EAF(L)SS] generated in Indiana, USA. In order to reduce the 1D swelling strains of these slags, 5%, 10%, and 20% Class C fly ash (CCFA) and 10% ground rubber replacement ratios were used to prepare steel slag mixtures for testing. The improvement due to CCFA replacement was evaluated by performing unconfined compression and long-term swelling tests on selected steel slag–CCFA mixtures. The seven-day unconfined compression strengths of 90% EAF(L)SS + 10% CCFA and 90% BOFSS + 10% CCFA mixtures were 2,387 and 3,768 kPa, respectively. After nine months of monitoring, the maximum 1D swelling strains of soaked samples of BOFSS and EAF(L)SS mixtures prepared with 10% CCFA replacement were 0.1% or less. The unconfined compression and swelling test results for the steel slag–CCFA mixtures indicated superior strength gain characteristics and negligible swelling strains with time than for steel slags.
    publisherASCE
    titleStrength-Gain Characteristics and Swelling Response of Steel Slag and Steel Slag–Fly Ash Mixtures
    typeJournal Article
    journal volume35
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-14823
    journal fristpage04023223-1
    journal lastpage04023223-16
    page16
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian