YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Physicomechanical Properties and Characterization of Gold Ore Tailings and the Utilization in Manufacturing of Geopolymer Concrete with Class F Fly Ash and Recycled Coarse Aggregates

    Source: Journal of Hazardous, Toxic, and Radioactive Waste:;2023:;Volume ( 027 ):;issue: 004::page 04023026-1
    Author:
    Eshwarayya Bolluru Lokesha
    ,
    Mangalpady Aruna
    ,
    Sandi Kumar Reddy
    ,
    Anil Sagar Srinivasa
    DOI: 10.1061/JHTRBP.HZENG-1248
    Publisher: ASCE
    Abstract: The mining industry generates a large amount of waste, particularly in the form of tailing dumps, which creates major environmental difficulties such as air pollution, water pollution, soil erosion, and acid mine drainage. Previous studies confirmed that the mine waste could be used in making building materials, such as bricks, tiles, concrete blocks, pavement blocks, and precast concrete elements. However, gold ore tailings (GOTs) are recognized as major mine residues in the mining industry. In this study, GOTs were utilized as partial replacement material (0%, 5%, 10%, 15%, 20%, 25%, and 30% by weight) to fine aggregates such as river sand (RS) and low calcium fly ash (FA) as binder material in the manufacture of geopolymer concrete (GPC) along with recycled coarse aggregates. The GPC samples were cast and cured at room temperature until the curing ages; subsequently, the compressive strength of the samples was determined. This study demonstrated that the RS can be partially substituted in the manufacture of GPC by GOTs up to 15% with a slump value of 38.6 mm and the maximum compressive strength of 35.8 MPa. The mineralogical and chemical composition of raw materials (i.e., GOTs and FA) was analyzed using X-ray diffraction (XRD) and X-ray fluorescence (XRF), respectively. The XRD analysis revealed that the quartz has the highest peak intensity of 55% in GOTs and 50% of corundum in FA. The XRF analysis exhibited that GOTs and FA have high silicon oxides up to 39% and 38%, respectively. The crushed GPC samples were analyzed using field emission scanning electron microscopy to observe the morphological changes. The GPC sample comprised 15% GOTs exhibited denser and compacted microstructures.
    • Download: (1.551Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Physicomechanical Properties and Characterization of Gold Ore Tailings and the Utilization in Manufacturing of Geopolymer Concrete with Class F Fly Ash and Recycled Coarse Aggregates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293633
    Collections
    • Journal of Hazardous, Toxic, and Radioactive Waste

    Show full item record

    contributor authorEshwarayya Bolluru Lokesha
    contributor authorMangalpady Aruna
    contributor authorSandi Kumar Reddy
    contributor authorAnil Sagar Srinivasa
    date accessioned2023-11-27T23:31:37Z
    date available2023-11-27T23:31:37Z
    date issued10/1/2023 12:00:00 AM
    date issued2023-10-01
    identifier otherJHTRBP.HZENG-1248.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293633
    description abstractThe mining industry generates a large amount of waste, particularly in the form of tailing dumps, which creates major environmental difficulties such as air pollution, water pollution, soil erosion, and acid mine drainage. Previous studies confirmed that the mine waste could be used in making building materials, such as bricks, tiles, concrete blocks, pavement blocks, and precast concrete elements. However, gold ore tailings (GOTs) are recognized as major mine residues in the mining industry. In this study, GOTs were utilized as partial replacement material (0%, 5%, 10%, 15%, 20%, 25%, and 30% by weight) to fine aggregates such as river sand (RS) and low calcium fly ash (FA) as binder material in the manufacture of geopolymer concrete (GPC) along with recycled coarse aggregates. The GPC samples were cast and cured at room temperature until the curing ages; subsequently, the compressive strength of the samples was determined. This study demonstrated that the RS can be partially substituted in the manufacture of GPC by GOTs up to 15% with a slump value of 38.6 mm and the maximum compressive strength of 35.8 MPa. The mineralogical and chemical composition of raw materials (i.e., GOTs and FA) was analyzed using X-ray diffraction (XRD) and X-ray fluorescence (XRF), respectively. The XRD analysis revealed that the quartz has the highest peak intensity of 55% in GOTs and 50% of corundum in FA. The XRF analysis exhibited that GOTs and FA have high silicon oxides up to 39% and 38%, respectively. The crushed GPC samples were analyzed using field emission scanning electron microscopy to observe the morphological changes. The GPC sample comprised 15% GOTs exhibited denser and compacted microstructures.
    publisherASCE
    titlePhysicomechanical Properties and Characterization of Gold Ore Tailings and the Utilization in Manufacturing of Geopolymer Concrete with Class F Fly Ash and Recycled Coarse Aggregates
    typeJournal Article
    journal volume27
    journal issue4
    journal titleJournal of Hazardous, Toxic, and Radioactive Waste
    identifier doi10.1061/JHTRBP.HZENG-1248
    journal fristpage04023026-1
    journal lastpage04023026-12
    page12
    treeJournal of Hazardous, Toxic, and Radioactive Waste:;2023:;Volume ( 027 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian