YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Use of Mesquite Hardwood–Derived Biochar for Stabilization and Solidification of Lead-Contaminated Soil

    Source: Journal of Hazardous, Toxic, and Radioactive Waste:;2023:;Volume ( 027 ):;issue: 004::page 04023016-1
    Author:
    Bhoomi A. Kamdar
    ,
    Chandresh H. Solanki
    ,
    Krishna R. Reddy
    DOI: 10.1061/JHTRBP.HZENG-1235
    Publisher: ASCE
    Abstract: Soil amendment and carbon sequestration are among the many possible applications for biochars, which are solid carbonaceous materials produced by biomass pyrolysis in an oxygen-deficient environment. Biochars have recently gained popularity as a resource for decontaminating soils polluted with hazardous materials. Primarily, the leaching procedure is used to assess the leachability of heavy metals in biochar-treated soils, but the effect of biochar on the stabilization and solidification (S/S) of heavy metals [e.g., lead (Pb)] in terms of geotechnical properties such as compaction and soil strength is not well understood. Therefore, this study aimed to determine the effect of hardwood biochar ranging from 0 to 10 wt.% on the S/S of soil contaminated with high concentrations of lead (5,000 and 10,000 mg/kg) with a curing period of up to 56 days. A comprehensive experimental study was carried out, including tests such as pH, compaction characteristics, unconfined compressive strength, the toxicity characteristic leaching procedure (TCLP), and the Community Bureau of Reference—sequential extraction procedure. Results showed that decreasing TCLP Pb levels were a function of increasing binder dosage and curing time. For Pb0.5% soil, adding 5 wt.% biochar could increase the immobilization efficiency to 88% after 28 days of curing. Chemical fraction analyses correlated a high degree of Pb immobilization to a decrease in the weak acid-soluble and reducible (F1 and F2) fractions and an increase in the oxidizable (F3) and residual (F4) fractions. The compressive strength of treated soil increased to 3.5–4 times that of untreated soil with an increase in the pH values after 28 days. X-ray diffraction and scanning electron microscopy analyses were carried out to deduce that physical adsorption and lead precipitation into compounds such as cerussite and pyromorphite were the underlying mechanisms for Pb immobilization. Finally, the treated soil was found to be a safe and environmentally friendly construction material, proving that hardwood biochar provides green and sustainable treatment of Pb-contaminated soil.
    • Download: (2.131Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Use of Mesquite Hardwood–Derived Biochar for Stabilization and Solidification of Lead-Contaminated Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293630
    Collections
    • Journal of Hazardous, Toxic, and Radioactive Waste

    Show full item record

    contributor authorBhoomi A. Kamdar
    contributor authorChandresh H. Solanki
    contributor authorKrishna R. Reddy
    date accessioned2023-11-27T23:31:24Z
    date available2023-11-27T23:31:24Z
    date issued10/1/2023 12:00:00 AM
    date issued2023-10-01
    identifier otherJHTRBP.HZENG-1235.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293630
    description abstractSoil amendment and carbon sequestration are among the many possible applications for biochars, which are solid carbonaceous materials produced by biomass pyrolysis in an oxygen-deficient environment. Biochars have recently gained popularity as a resource for decontaminating soils polluted with hazardous materials. Primarily, the leaching procedure is used to assess the leachability of heavy metals in biochar-treated soils, but the effect of biochar on the stabilization and solidification (S/S) of heavy metals [e.g., lead (Pb)] in terms of geotechnical properties such as compaction and soil strength is not well understood. Therefore, this study aimed to determine the effect of hardwood biochar ranging from 0 to 10 wt.% on the S/S of soil contaminated with high concentrations of lead (5,000 and 10,000 mg/kg) with a curing period of up to 56 days. A comprehensive experimental study was carried out, including tests such as pH, compaction characteristics, unconfined compressive strength, the toxicity characteristic leaching procedure (TCLP), and the Community Bureau of Reference—sequential extraction procedure. Results showed that decreasing TCLP Pb levels were a function of increasing binder dosage and curing time. For Pb0.5% soil, adding 5 wt.% biochar could increase the immobilization efficiency to 88% after 28 days of curing. Chemical fraction analyses correlated a high degree of Pb immobilization to a decrease in the weak acid-soluble and reducible (F1 and F2) fractions and an increase in the oxidizable (F3) and residual (F4) fractions. The compressive strength of treated soil increased to 3.5–4 times that of untreated soil with an increase in the pH values after 28 days. X-ray diffraction and scanning electron microscopy analyses were carried out to deduce that physical adsorption and lead precipitation into compounds such as cerussite and pyromorphite were the underlying mechanisms for Pb immobilization. Finally, the treated soil was found to be a safe and environmentally friendly construction material, proving that hardwood biochar provides green and sustainable treatment of Pb-contaminated soil.
    publisherASCE
    titleUse of Mesquite Hardwood–Derived Biochar for Stabilization and Solidification of Lead-Contaminated Soil
    typeJournal Article
    journal volume27
    journal issue4
    journal titleJournal of Hazardous, Toxic, and Radioactive Waste
    identifier doi10.1061/JHTRBP.HZENG-1235
    journal fristpage04023016-1
    journal lastpage04023016-9
    page9
    treeJournal of Hazardous, Toxic, and Radioactive Waste:;2023:;Volume ( 027 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian