YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Developing a Hybrid Fuzzy Decision-Making Model for Sustainable Circular Contractor Selection

    Source: Journal of Construction Engineering and Management:;2023:;Volume ( 149 ):;issue: 010::page 04023095-1
    Author:
    Kerim Koc
    ,
    Ömer Ekmekcioglu
    ,
    Zeynep Işık
    DOI: 10.1061/JCEMD4.COENG-13305
    Publisher: ASCE
    Abstract: The construction sector accounts for a significant proportion of natural resource consumption and waste generation. This reveals the essentiality for gravitating the operations in the industry toward more sustainable paradigms. To tackle these concerns, the circular economy (CE) model has become a central concept to render conventional production and consumption behaviors in construction projects into innovative and sustainable patterns. In construction projects, selecting the most competent contractor is of paramount importance. Hence, the present research seeks to establish a comprehensive evaluation framework for sustainable circular contractor selection based on a hybrid fuzzy multicriteria decision-making (MCDM) approach. In this respect, the fuzzy analytical hierarchy process (AHP) was adopted for assessing the CE indicators, while the fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) was utilized for evaluating circularity and eligibility of contractors. The utility of the proposed framework was predicated with regard to hydropower projects due to several environmental challenges encountered in the corresponding subsector. The results show that the contractors can be circular only if they have strong financial viability, develop strategies to implement ReSOLVE (regenerate, share, optimize, loop, virtualize, exchange), adopt specific construction methods to CE (e.g., modular construction), and propose sustainable innovative solutions. Overall, the proposed hybrid fuzzy MCDM framework can be used as a more systematic and transparent approach for selecting the most circular and sustainable contractors, contributing to the preservation of earth’s resources. Given the current contractors’ limited capacity to address circularity and sustainability concerns, the findings of this study can be regarded as a roadmap and contributes to practice by achieving circular and sustainable construction objectives with waste reduction, cost savings, and environmental benefits.
    • Download: (554.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Developing a Hybrid Fuzzy Decision-Making Model for Sustainable Circular Contractor Selection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293443
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorKerim Koc
    contributor authorÖmer Ekmekcioglu
    contributor authorZeynep Işık
    date accessioned2023-11-27T23:16:40Z
    date available2023-11-27T23:16:40Z
    date issued7/26/2023 12:00:00 AM
    date issued2023-07-26
    identifier otherJCEMD4.COENG-13305.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293443
    description abstractThe construction sector accounts for a significant proportion of natural resource consumption and waste generation. This reveals the essentiality for gravitating the operations in the industry toward more sustainable paradigms. To tackle these concerns, the circular economy (CE) model has become a central concept to render conventional production and consumption behaviors in construction projects into innovative and sustainable patterns. In construction projects, selecting the most competent contractor is of paramount importance. Hence, the present research seeks to establish a comprehensive evaluation framework for sustainable circular contractor selection based on a hybrid fuzzy multicriteria decision-making (MCDM) approach. In this respect, the fuzzy analytical hierarchy process (AHP) was adopted for assessing the CE indicators, while the fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) was utilized for evaluating circularity and eligibility of contractors. The utility of the proposed framework was predicated with regard to hydropower projects due to several environmental challenges encountered in the corresponding subsector. The results show that the contractors can be circular only if they have strong financial viability, develop strategies to implement ReSOLVE (regenerate, share, optimize, loop, virtualize, exchange), adopt specific construction methods to CE (e.g., modular construction), and propose sustainable innovative solutions. Overall, the proposed hybrid fuzzy MCDM framework can be used as a more systematic and transparent approach for selecting the most circular and sustainable contractors, contributing to the preservation of earth’s resources. Given the current contractors’ limited capacity to address circularity and sustainability concerns, the findings of this study can be regarded as a roadmap and contributes to practice by achieving circular and sustainable construction objectives with waste reduction, cost savings, and environmental benefits.
    publisherASCE
    titleDeveloping a Hybrid Fuzzy Decision-Making Model for Sustainable Circular Contractor Selection
    typeJournal Article
    journal volume149
    journal issue10
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/JCEMD4.COENG-13305
    journal fristpage04023095-1
    journal lastpage04023095-20
    page20
    treeJournal of Construction Engineering and Management:;2023:;Volume ( 149 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian