YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Workability Properties of Specified Density Concrete with Municipal Solid Waste Incinerator Tailings Added as a Lightweight Aggregate

    Source: Journal of Construction Engineering and Management:;2023:;Volume ( 149 ):;issue: 008::page 04023058-1
    Author:
    Minggang Shang
    ,
    Yunsheng Zhang
    ,
    Zhongmao He
    ,
    Hongxia Qiao
    ,
    Xingyan Liu
    ,
    Qiong Feng
    ,
    Cuizhen Xue
    ,
    Yu Zhang
    ,
    Fuyun Su
    ,
    Jinpen Wang
    ,
    Yuehui Han
    ,
    Xianghui Meng
    DOI: 10.1061/JCEMD4.COENG-13148
    Publisher: ASCE
    Abstract: The application of municipal solid waste incineration tailings lightweight aggregate (MSWI-TLA) for reducing carbon emissions, energy consumption, and environmental pollution of bulk solid waste treatment has received extensive attention. As a new type of green lightweight aggregate, MSWI-TLA exhibits considerably good performance and broad prospects; however, its working performance in cement-based materials is not as good as that of ordinary aggregates. In this study, a standardized municipal solid waste incineration tailings lightweight fine aggregate (MSWI-TLFA) with a fineness modulus of 3.1 and a municipal solid waste of 10 mm were utilized as substitutes for the common aggregate. The incineration tailings lightweight coarse aggregate (MSWI-TLCA) with the particle size ranging from 5 to stirring process and the fluidity and filling properties were improved, and stratification was slowed down. Based on the slump, fluidity, and stratification data of municipal solid waste incineration tailings lightweight aggregate specific density concrete (MSWI-TLA-SDC), the internal and external stacking structure model, matrix density three-phase diagram, and stratification function relationship were established, and the formation mechanism of fluidity and homogeneity under the synergistic effect of MSWI-TLA-SDC matrix density was revealed. Simultaneously, the qualitative analysis of homogeneity was carried out intuitively and visualized using computed tomography (CT) technology, and the accurate quantitative analysis model of stratification degree and aggregate separation factor was established using the principle of fluid mechanics, and the optimization effect was verified. The results show that the fluidity of MSWI-TLA-SDC decreases by 3.3%–30.5% and the delamination degree increases by 4.9%–22.9% compared with ordinary concrete. The main reason for the poor fluidity and homogeneity of MSWI-TLA-SDC is the poor density synergy between tailings lightweight aggregate, ordinary aggregate, and mortar matrix. The preabsorbed gravel-type small-size tailings lightweight aggregate along with technical measures like combining water-reducing agent, fine tailings aggregate, and tailings powder can be used to reduce the difference in matrix density and fully exploit the synergistic effects of matrix density. For the closed-loop absorption of tailings lightweight aggregate as well as the technical advancement and promotion of MSWI-TLA-SDC, it is crucial to increase the fluidity and homogeneity of MSWI-TLA-SDC.
    • Download: (5.337Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Workability Properties of Specified Density Concrete with Municipal Solid Waste Incinerator Tailings Added as a Lightweight Aggregate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293429
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorMinggang Shang
    contributor authorYunsheng Zhang
    contributor authorZhongmao He
    contributor authorHongxia Qiao
    contributor authorXingyan Liu
    contributor authorQiong Feng
    contributor authorCuizhen Xue
    contributor authorYu Zhang
    contributor authorFuyun Su
    contributor authorJinpen Wang
    contributor authorYuehui Han
    contributor authorXianghui Meng
    date accessioned2023-11-27T23:15:57Z
    date available2023-11-27T23:15:57Z
    date issued5/19/2023 12:00:00 AM
    date issued2023-05-19
    identifier otherJCEMD4.COENG-13148.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293429
    description abstractThe application of municipal solid waste incineration tailings lightweight aggregate (MSWI-TLA) for reducing carbon emissions, energy consumption, and environmental pollution of bulk solid waste treatment has received extensive attention. As a new type of green lightweight aggregate, MSWI-TLA exhibits considerably good performance and broad prospects; however, its working performance in cement-based materials is not as good as that of ordinary aggregates. In this study, a standardized municipal solid waste incineration tailings lightweight fine aggregate (MSWI-TLFA) with a fineness modulus of 3.1 and a municipal solid waste of 10 mm were utilized as substitutes for the common aggregate. The incineration tailings lightweight coarse aggregate (MSWI-TLCA) with the particle size ranging from 5 to stirring process and the fluidity and filling properties were improved, and stratification was slowed down. Based on the slump, fluidity, and stratification data of municipal solid waste incineration tailings lightweight aggregate specific density concrete (MSWI-TLA-SDC), the internal and external stacking structure model, matrix density three-phase diagram, and stratification function relationship were established, and the formation mechanism of fluidity and homogeneity under the synergistic effect of MSWI-TLA-SDC matrix density was revealed. Simultaneously, the qualitative analysis of homogeneity was carried out intuitively and visualized using computed tomography (CT) technology, and the accurate quantitative analysis model of stratification degree and aggregate separation factor was established using the principle of fluid mechanics, and the optimization effect was verified. The results show that the fluidity of MSWI-TLA-SDC decreases by 3.3%–30.5% and the delamination degree increases by 4.9%–22.9% compared with ordinary concrete. The main reason for the poor fluidity and homogeneity of MSWI-TLA-SDC is the poor density synergy between tailings lightweight aggregate, ordinary aggregate, and mortar matrix. The preabsorbed gravel-type small-size tailings lightweight aggregate along with technical measures like combining water-reducing agent, fine tailings aggregate, and tailings powder can be used to reduce the difference in matrix density and fully exploit the synergistic effects of matrix density. For the closed-loop absorption of tailings lightweight aggregate as well as the technical advancement and promotion of MSWI-TLA-SDC, it is crucial to increase the fluidity and homogeneity of MSWI-TLA-SDC.
    publisherASCE
    titleWorkability Properties of Specified Density Concrete with Municipal Solid Waste Incinerator Tailings Added as a Lightweight Aggregate
    typeJournal Article
    journal volume149
    journal issue8
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/JCEMD4.COENG-13148
    journal fristpage04023058-1
    journal lastpage04023058-17
    page17
    treeJournal of Construction Engineering and Management:;2023:;Volume ( 149 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian