YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Discretized Cell Modeling for Optimal Layout of Multiple Tower Cranes

    Source: Journal of Construction Engineering and Management:;2023:;Volume ( 149 ):;issue: 008::page 04023068-1
    Author:
    Chun Huang
    ,
    Zi Kang Wang
    ,
    Bei Li
    ,
    Cong Wang
    ,
    Li Shan Xu
    ,
    Kai Jiang
    ,
    Meng Liu
    ,
    Cai Xia Guo
    ,
    Xue Feng Zhao
    ,
    He Yang
    DOI: 10.1061/JCEMD4.COENG-13146
    Publisher: ASCE
    Abstract: Multiple tower crane layout planning (MTCLP) refers to the selection of the types, quantities, and positions of tower cranes and material storage positions. In a construction project, choosing tower cranes with a larger covering radius and lifting capacity can reduce the transportation time of materials. However, it can also simultaneously raise the rental cost and the risk of crane crashes. Determining an optimal multiple tower crane layout plan to achieve high construction efficiency with low cost is still a challenge. Mathematically, MTCLP is a complex combinatorial problem controlled by a number of variables, such as site configuration, building layout, material storage positions, and workload. To precisely describe irregular shaped sites and buildings, this research partitioned the site into unit cells and proposed a cell-based optimization model. For the optimal crane layout plan, the problem was formulated as a mixed integer linear problem (MILP). The model’s mathematical constraints comprised coverage of the given positions, the crane’s safety distance, sufficient crane capacity, and the utilization ratio. The objectives were to increase the crane coverage ratio while reducing the cost and the working areas overlapped by more than two cranes. Two case studies are presented to demonstrate the effectiveness of the model. The first construction project consisted of seven buildings with irregular shapes. By strictly forbidding the areas to be overlapped by more than three tower cranes, the model successfully obtained the optimal crane layout plan using the Gurobi Optimizer. Compared with the contractor’s layout plan, the optimal plan reduced the rental cost by 10.7% and the area overlapped by more than three tower cranes by 4.56%. In the second project, alternative plans were identified by the Gurobi Optimizer and ε-constraint method to enhance confidence in selecting the ultimate crane layout plan. The optimization procedure involved (1) optimizing the layout plan with minimum crane cost and maximum coverage ratio, (2) identifying all possible layouts as the Pareto fronts when the coverage ratio could not be raised without increasing the crane cost, and (3) minimizing the areas of crane overlap covered by more than three tower cranes. The effectiveness of the proposed model is also proved by comparing the differences in layout plans caused by “regular” and “urgent” lifting demands.
    • Download: (5.826Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Discretized Cell Modeling for Optimal Layout of Multiple Tower Cranes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293428
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorChun Huang
    contributor authorZi Kang Wang
    contributor authorBei Li
    contributor authorCong Wang
    contributor authorLi Shan Xu
    contributor authorKai Jiang
    contributor authorMeng Liu
    contributor authorCai Xia Guo
    contributor authorXue Feng Zhao
    contributor authorHe Yang
    date accessioned2023-11-27T23:15:55Z
    date available2023-11-27T23:15:55Z
    date issued6/6/2023 12:00:00 AM
    date issued2023-06-06
    identifier otherJCEMD4.COENG-13146.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293428
    description abstractMultiple tower crane layout planning (MTCLP) refers to the selection of the types, quantities, and positions of tower cranes and material storage positions. In a construction project, choosing tower cranes with a larger covering radius and lifting capacity can reduce the transportation time of materials. However, it can also simultaneously raise the rental cost and the risk of crane crashes. Determining an optimal multiple tower crane layout plan to achieve high construction efficiency with low cost is still a challenge. Mathematically, MTCLP is a complex combinatorial problem controlled by a number of variables, such as site configuration, building layout, material storage positions, and workload. To precisely describe irregular shaped sites and buildings, this research partitioned the site into unit cells and proposed a cell-based optimization model. For the optimal crane layout plan, the problem was formulated as a mixed integer linear problem (MILP). The model’s mathematical constraints comprised coverage of the given positions, the crane’s safety distance, sufficient crane capacity, and the utilization ratio. The objectives were to increase the crane coverage ratio while reducing the cost and the working areas overlapped by more than two cranes. Two case studies are presented to demonstrate the effectiveness of the model. The first construction project consisted of seven buildings with irregular shapes. By strictly forbidding the areas to be overlapped by more than three tower cranes, the model successfully obtained the optimal crane layout plan using the Gurobi Optimizer. Compared with the contractor’s layout plan, the optimal plan reduced the rental cost by 10.7% and the area overlapped by more than three tower cranes by 4.56%. In the second project, alternative plans were identified by the Gurobi Optimizer and ε-constraint method to enhance confidence in selecting the ultimate crane layout plan. The optimization procedure involved (1) optimizing the layout plan with minimum crane cost and maximum coverage ratio, (2) identifying all possible layouts as the Pareto fronts when the coverage ratio could not be raised without increasing the crane cost, and (3) minimizing the areas of crane overlap covered by more than three tower cranes. The effectiveness of the proposed model is also proved by comparing the differences in layout plans caused by “regular” and “urgent” lifting demands.
    publisherASCE
    titleDiscretized Cell Modeling for Optimal Layout of Multiple Tower Cranes
    typeJournal Article
    journal volume149
    journal issue8
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/JCEMD4.COENG-13146
    journal fristpage04023068-1
    journal lastpage04023068-19
    page19
    treeJournal of Construction Engineering and Management:;2023:;Volume ( 149 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian