YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact Response of Prestressed Prefabricated Segmental and Monolithic Basalt-FRP-Reinforced Geopolymer Concrete Beams

    Source: Journal of Composites for Construction:;2023:;Volume ( 027 ):;issue: 005::page 04023045-1
    Author:
    Duong T. Tran
    ,
    Thong M. Pham
    ,
    Hong Hao
    ,
    Tung T. Tran
    ,
    Wensu Chen
    DOI: 10.1061/JCCOF2.CCENG-4204
    Publisher: ASCE
    Abstract: The use of low-emission geopolymer concrete (GPC) and noncorrodible basalt-fiber-reinforced polymer (BFRP) bars is an effective strategy in the bid for net zero emissions and making sustainable and durable structures. To date, however, there have been no studies on the impact response of prefabricated/precast segmental concrete beams (PSCBs) constructed using GPC and BFRP bars. This experimental study, therefore, was intended to partially fill this knowledge gap. The key objectives were to investigate the impact behavior of the segmental versus traditional monolithic beams, the effect of impact location, and the performance of GPC versus ordinary Portland cement (OPC) concrete beams. The test results showed that, with the energy absorption capability derived from the opening and sliding of joints, the PSCB experienced less damage than its monolithic counterpart under similar impact conditions. The joints, however, reduced the global stiffness of the PSCB, resulting in the PSCB having a higher displacement, lower impact and reaction forces, but a longer impact force duration and greater impulse, compared to the corresponding monolithic beam. Under the impact loads, the PSCB had a higher tendon force but smaller reinforcement strain than the monolithic beam. Impacting at the joints mobilized the energy absorption capability more effectively, resulting in a reduction in impact-induced damage. The impact performance of both the monolithic and segmental GPC beams was quite similar to that of their OPC counterparts. Thus, GPC can be adopted as a sustainable alternative to OPC in the construction of concrete structures against impact loads. In this study, a three-dimensional finite-element model was also developed in order to obtain a better understanding of the impact behavior of segmental and monolithic beams.
    • Download: (6.580Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact Response of Prestressed Prefabricated Segmental and Monolithic Basalt-FRP-Reinforced Geopolymer Concrete Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293393
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorDuong T. Tran
    contributor authorThong M. Pham
    contributor authorHong Hao
    contributor authorTung T. Tran
    contributor authorWensu Chen
    date accessioned2023-11-27T23:13:30Z
    date available2023-11-27T23:13:30Z
    date issued10/1/2023 12:00:00 AM
    date issued2023-10-01
    identifier otherJCCOF2.CCENG-4204.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293393
    description abstractThe use of low-emission geopolymer concrete (GPC) and noncorrodible basalt-fiber-reinforced polymer (BFRP) bars is an effective strategy in the bid for net zero emissions and making sustainable and durable structures. To date, however, there have been no studies on the impact response of prefabricated/precast segmental concrete beams (PSCBs) constructed using GPC and BFRP bars. This experimental study, therefore, was intended to partially fill this knowledge gap. The key objectives were to investigate the impact behavior of the segmental versus traditional monolithic beams, the effect of impact location, and the performance of GPC versus ordinary Portland cement (OPC) concrete beams. The test results showed that, with the energy absorption capability derived from the opening and sliding of joints, the PSCB experienced less damage than its monolithic counterpart under similar impact conditions. The joints, however, reduced the global stiffness of the PSCB, resulting in the PSCB having a higher displacement, lower impact and reaction forces, but a longer impact force duration and greater impulse, compared to the corresponding monolithic beam. Under the impact loads, the PSCB had a higher tendon force but smaller reinforcement strain than the monolithic beam. Impacting at the joints mobilized the energy absorption capability more effectively, resulting in a reduction in impact-induced damage. The impact performance of both the monolithic and segmental GPC beams was quite similar to that of their OPC counterparts. Thus, GPC can be adopted as a sustainable alternative to OPC in the construction of concrete structures against impact loads. In this study, a three-dimensional finite-element model was also developed in order to obtain a better understanding of the impact behavior of segmental and monolithic beams.
    publisherASCE
    titleImpact Response of Prestressed Prefabricated Segmental and Monolithic Basalt-FRP-Reinforced Geopolymer Concrete Beams
    typeJournal Article
    journal volume27
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/JCCOF2.CCENG-4204
    journal fristpage04023045-1
    journal lastpage04023045-22
    page22
    treeJournal of Composites for Construction:;2023:;Volume ( 027 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian