YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Punching Shear Behavior of FRP Grid-Reinforced Ultra-High Performance Concrete Slabs

    Source: Journal of Composites for Construction:;2023:;Volume ( 027 ):;issue: 004::page 04023031-1
    Author:
    JinJing Liao
    ,
    Jun-Jie Zeng
    ,
    Xin-Chao Lin
    ,
    Yan Zhuge
    ,
    Shao-Hua He
    DOI: 10.1061/JCCOF2.CCENG-4148
    Publisher: ASCE
    Abstract: Fiber-reinforced polymer (FRP) grid-reinforced ultra-high performance concrete (UHPC) slabs are new structural solutions that take advantage of the mechanical properties of FRP and UHPC. However, the punching shear behavior of this new slab type has not been characterized. Therefore, punching shear tests were conducted to eight carbon fiber-reinforced polymer (CFRP) bars or grid-reinforced UHPC square slabs (600 mm side width × 40 mm thick). Several influential factors [e.g., use of CFRP bars or grids as flexural reinforcements, type of strengthening short fiber, steel fiber (SF) content, and presence of shear reinforcements] were investigated. The test results showed that FRP grids and short fibers helped to distribute the applied loads and dissipate the input energy; therefore, more cracks were observed, and higher punching shear capacities were achieved. Furthermore, increasing the reinforcement ratio in the FRP grids led to a more significant postcrack ductility response, which increased the punching shear capacity by 17%. In addition, SF addition could enhance the initial cracking load of the slab (Vcr), and polyethylene (PE) fiber addition could intensify the postcrack ductility response, both enhanced the punching shear capacity. The installation of shear reinforcements (eight pieces of 80 mm long CFRP grid strips) appeared to be more cost-effective than increasing SF content. Finally, compared with the current design provisions for conventional reinforced concrete slabs, a more accurate (average error of 8%) punching shear model was proposed for FRP grid-reinforced UHPC slabs with or without SF additions. However, the robustness of the proposed model will be assessed with more test data in the future.
    • Download: (4.009Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Punching Shear Behavior of FRP Grid-Reinforced Ultra-High Performance Concrete Slabs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293383
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorJinJing Liao
    contributor authorJun-Jie Zeng
    contributor authorXin-Chao Lin
    contributor authorYan Zhuge
    contributor authorShao-Hua He
    date accessioned2023-11-27T23:12:37Z
    date available2023-11-27T23:12:37Z
    date issued8/1/2023 12:00:00 AM
    date issued2023-08-01
    identifier otherJCCOF2.CCENG-4148.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293383
    description abstractFiber-reinforced polymer (FRP) grid-reinforced ultra-high performance concrete (UHPC) slabs are new structural solutions that take advantage of the mechanical properties of FRP and UHPC. However, the punching shear behavior of this new slab type has not been characterized. Therefore, punching shear tests were conducted to eight carbon fiber-reinforced polymer (CFRP) bars or grid-reinforced UHPC square slabs (600 mm side width × 40 mm thick). Several influential factors [e.g., use of CFRP bars or grids as flexural reinforcements, type of strengthening short fiber, steel fiber (SF) content, and presence of shear reinforcements] were investigated. The test results showed that FRP grids and short fibers helped to distribute the applied loads and dissipate the input energy; therefore, more cracks were observed, and higher punching shear capacities were achieved. Furthermore, increasing the reinforcement ratio in the FRP grids led to a more significant postcrack ductility response, which increased the punching shear capacity by 17%. In addition, SF addition could enhance the initial cracking load of the slab (Vcr), and polyethylene (PE) fiber addition could intensify the postcrack ductility response, both enhanced the punching shear capacity. The installation of shear reinforcements (eight pieces of 80 mm long CFRP grid strips) appeared to be more cost-effective than increasing SF content. Finally, compared with the current design provisions for conventional reinforced concrete slabs, a more accurate (average error of 8%) punching shear model was proposed for FRP grid-reinforced UHPC slabs with or without SF additions. However, the robustness of the proposed model will be assessed with more test data in the future.
    publisherASCE
    titlePunching Shear Behavior of FRP Grid-Reinforced Ultra-High Performance Concrete Slabs
    typeJournal Article
    journal volume27
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/JCCOF2.CCENG-4148
    journal fristpage04023031-1
    journal lastpage04023031-18
    page18
    treeJournal of Composites for Construction:;2023:;Volume ( 027 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian