YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Construction Photo Localization in 3D Reality Models for Vision-Based Automated Daily Project Monitoring

    Source: Journal of Computing in Civil Engineering:;2023:;Volume ( 037 ):;issue: 006::page 04023029-1
    Author:
    Tse Hsiang Wang
    ,
    Aritra Pal
    ,
    Jacob J. Lin
    ,
    Shang-Hsien Hsieh
    DOI: 10.1061/JCCEE5.CPENG-5353
    Publisher: ASCE
    Abstract: Recent research has focused on visualizing and analyzing massive visual data (images/videos) captured at construction sites to improve coordination, communication, and planning. One key approach is to generate reality models (point clouds) from ordered visual data using three-dimensional (3D) reconstruction pipelines and then compare them with the as-planned four-dimensional (4D) building information model (BIM). However, ordered photo collection requires a strict capture plan and happens only after a specific time interval. Additionally, the reality models demand a considerable amount of processing time. As a result, the construction project status is often unreported between the intervals. The random photos captured daily by construction practitioners from different parts of the projects are helpful in filling this void. Localizing them in the 3D reality model helps to extract valuable information on time for effective construction monitoring. This study develops a system that localizes random photos in reality models using computer vision and deep learning–based approaches. Specifically, given a set of photos and a point cloud pair, a deep learning network for a six-degrees-of-freedom (6DOF) camera pose regression is trained to take any random photo within the point cloud region and estimate its position and orientation. The network performance is enhanced through data augmentation by another generative adversarial network: the pix2pix generative adversarial network (GAN). Finally, the poses are refined through traditional vision methods such as Perspective-n-Point (PnP) pose computation with random sample consensus (RANSAC). The proposed method was evaluated on a construction site. The system could localize random images captured during construction engineers’ daily work with as low as 0.04 m position error and 0.70° orientation error. In the end, this paper indicates further applications of construction image localization in the context of progress, quality, and safety monitoring.
    • Download: (4.014Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Construction Photo Localization in 3D Reality Models for Vision-Based Automated Daily Project Monitoring

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293366
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorTse Hsiang Wang
    contributor authorAritra Pal
    contributor authorJacob J. Lin
    contributor authorShang-Hsien Hsieh
    date accessioned2023-11-27T23:11:16Z
    date available2023-11-27T23:11:16Z
    date issued8/7/2023 12:00:00 AM
    date issued2023-08-07
    identifier otherJCCEE5.CPENG-5353.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293366
    description abstractRecent research has focused on visualizing and analyzing massive visual data (images/videos) captured at construction sites to improve coordination, communication, and planning. One key approach is to generate reality models (point clouds) from ordered visual data using three-dimensional (3D) reconstruction pipelines and then compare them with the as-planned four-dimensional (4D) building information model (BIM). However, ordered photo collection requires a strict capture plan and happens only after a specific time interval. Additionally, the reality models demand a considerable amount of processing time. As a result, the construction project status is often unreported between the intervals. The random photos captured daily by construction practitioners from different parts of the projects are helpful in filling this void. Localizing them in the 3D reality model helps to extract valuable information on time for effective construction monitoring. This study develops a system that localizes random photos in reality models using computer vision and deep learning–based approaches. Specifically, given a set of photos and a point cloud pair, a deep learning network for a six-degrees-of-freedom (6DOF) camera pose regression is trained to take any random photo within the point cloud region and estimate its position and orientation. The network performance is enhanced through data augmentation by another generative adversarial network: the pix2pix generative adversarial network (GAN). Finally, the poses are refined through traditional vision methods such as Perspective-n-Point (PnP) pose computation with random sample consensus (RANSAC). The proposed method was evaluated on a construction site. The system could localize random images captured during construction engineers’ daily work with as low as 0.04 m position error and 0.70° orientation error. In the end, this paper indicates further applications of construction image localization in the context of progress, quality, and safety monitoring.
    publisherASCE
    titleConstruction Photo Localization in 3D Reality Models for Vision-Based Automated Daily Project Monitoring
    typeJournal Article
    journal volume37
    journal issue6
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/JCCEE5.CPENG-5353
    journal fristpage04023029-1
    journal lastpage04023029-19
    page19
    treeJournal of Computing in Civil Engineering:;2023:;Volume ( 037 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian