YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on the Shear Behavior of UHPC-Strengthened Concrete T-Beams

    Source: Journal of Bridge Engineering:;2023:;Volume ( 028 ):;issue: 009::page 04023064-1
    Author:
    Tongxu Liu
    ,
    Jean-Philippe Charron
    DOI: 10.1061/JBENF2.BEENG-6122
    Publisher: ASCE
    Abstract: Ultrahigh-performance concrete (UHPC) strengthening is an efficient technique to improve the capacity of shear-deficient members. However, the applicability of UHPC strengthening on a T-beam has been scarcely investigated, particularly with regard to repair configurations not reaching beam supports involving a higher delamination potential. In this study, the shear behavior of concrete T-beams with cast-in-place UHPC strengthening is investigated with 10 concrete T-beams, including different strengthening configurations, layer thicknesses, and anchors at the repair interface. Beams with a UHPC bottom layer ending before the support are investigated for the first time. Load–deflection, lateral, and cross-sectional cracking patterns in each beam are analyzed. Besides, strain distributions of the beams are recorded and analyzed through a digital image correlation system to distinguish different failure modes. The efficiency of UHPC strengthening for improving the shear behavior of concrete beams is clarified, and recommendations are provided for a UHPC-strengthened beam design to avoid delamination. The testing results show that UHPC strengthening using lateral layers is the most efficient configuration for improving shear capacity and does not increase the sectional height, while a U-shaped jacket configuration is recommended when a substantial increase of beam stiffness is required. A combination of shear and separation failure is found in beams with a UHPC bottom layer ending before the support, and it is, therefore, suggested not to use a UHPC bottom layer alone due to the development of separation cracks. More ductile failure modes obtained with 50-mm lateral layers and a 25-mm U-jacket are suggested. Installation of anchors at the repair interface is recommended to achieve more ductile failure modes.
    • Download: (3.175Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on the Shear Behavior of UHPC-Strengthened Concrete T-Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293337
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorTongxu Liu
    contributor authorJean-Philippe Charron
    date accessioned2023-11-27T23:09:15Z
    date available2023-11-27T23:09:15Z
    date issued9/1/2023 12:00:00 AM
    date issued2023-09-01
    identifier otherJBENF2.BEENG-6122.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293337
    description abstractUltrahigh-performance concrete (UHPC) strengthening is an efficient technique to improve the capacity of shear-deficient members. However, the applicability of UHPC strengthening on a T-beam has been scarcely investigated, particularly with regard to repair configurations not reaching beam supports involving a higher delamination potential. In this study, the shear behavior of concrete T-beams with cast-in-place UHPC strengthening is investigated with 10 concrete T-beams, including different strengthening configurations, layer thicknesses, and anchors at the repair interface. Beams with a UHPC bottom layer ending before the support are investigated for the first time. Load–deflection, lateral, and cross-sectional cracking patterns in each beam are analyzed. Besides, strain distributions of the beams are recorded and analyzed through a digital image correlation system to distinguish different failure modes. The efficiency of UHPC strengthening for improving the shear behavior of concrete beams is clarified, and recommendations are provided for a UHPC-strengthened beam design to avoid delamination. The testing results show that UHPC strengthening using lateral layers is the most efficient configuration for improving shear capacity and does not increase the sectional height, while a U-shaped jacket configuration is recommended when a substantial increase of beam stiffness is required. A combination of shear and separation failure is found in beams with a UHPC bottom layer ending before the support, and it is, therefore, suggested not to use a UHPC bottom layer alone due to the development of separation cracks. More ductile failure modes obtained with 50-mm lateral layers and a 25-mm U-jacket are suggested. Installation of anchors at the repair interface is recommended to achieve more ductile failure modes.
    publisherASCE
    titleExperimental Study on the Shear Behavior of UHPC-Strengthened Concrete T-Beams
    typeJournal Article
    journal volume28
    journal issue9
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/JBENF2.BEENG-6122
    journal fristpage04023064-1
    journal lastpage04023064-13
    page13
    treeJournal of Bridge Engineering:;2023:;Volume ( 028 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian