YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Expert Knowledge–Guided Bayesian Belief Networks for Predicting Bridge Pile Capacity

    Source: Journal of Bridge Engineering:;2023:;Volume ( 028 ):;issue: 009::page 04023058-1
    Author:
    Rayan H. Assaad
    ,
    Xi Hu
    ,
    Mohab Hussein
    DOI: 10.1061/JBENF2.BEENG-6096
    Publisher: ASCE
    Abstract: Bridge pile capacity is a vital criterion used to assure the durability and stability of a bridge pile foundation. In fact, reliably predicting the pile capacity plays a significant role in supporting data-driven decisions for the design, construction, and quality assurance of bridge piles. While previous studies have examined black-box machine learning (ML) models for bridge pile capacity prediction, little-to-no studies were directed to integrating expert knowledge and large bridge pile data to develop an easy-to-interpret white-box ML model for estimating bridge pile capacity. Therefore, this study proposed a novel white-box expert knowledge–guided Bayesian belief network (BBN) to accurately estimate bridge pile capacity. The proposed BBN was developed based on (1) a comprehensive bridge pile data set of 2,735 data points collected from a large bridge project, (2) expert knowledge obtained from eight bridge and geotechnical experts using the systematic three-round Delphi method, (3) a variety of data preprocessing methods, and (4) parametric Bayesian learning applied to different graphical models. The performance of four different BBN models was assessed and compared based on an unseen testing set to evaluate the generalizability of the proposed BBN model. Model evaluation results indicated that the optimal BBN is a tree-augmented Bayesian network that can estimate the discretized capacity of bridge piles with an accuracy of 90.51%. The proposed BBN model was further validated by testing its generalizability performance on another data from a different location. This study contributed to the body of knowledge by providing a novel, intrinsically interpretable, and robust data-driven expert knowledge–guided model for accurately estimating the bearing capacity of bridge piles. Ultimately, this paper aims to attract more research and practical attention toward developing knowledge-based white-box models for advancing the predictive analytics of bridge pile-related data and decisions.
    • Download: (2.339Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Expert Knowledge–Guided Bayesian Belief Networks for Predicting Bridge Pile Capacity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293334
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorRayan H. Assaad
    contributor authorXi Hu
    contributor authorMohab Hussein
    date accessioned2023-11-27T23:09:06Z
    date available2023-11-27T23:09:06Z
    date issued9/1/2023 12:00:00 AM
    date issued2023-09-01
    identifier otherJBENF2.BEENG-6096.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293334
    description abstractBridge pile capacity is a vital criterion used to assure the durability and stability of a bridge pile foundation. In fact, reliably predicting the pile capacity plays a significant role in supporting data-driven decisions for the design, construction, and quality assurance of bridge piles. While previous studies have examined black-box machine learning (ML) models for bridge pile capacity prediction, little-to-no studies were directed to integrating expert knowledge and large bridge pile data to develop an easy-to-interpret white-box ML model for estimating bridge pile capacity. Therefore, this study proposed a novel white-box expert knowledge–guided Bayesian belief network (BBN) to accurately estimate bridge pile capacity. The proposed BBN was developed based on (1) a comprehensive bridge pile data set of 2,735 data points collected from a large bridge project, (2) expert knowledge obtained from eight bridge and geotechnical experts using the systematic three-round Delphi method, (3) a variety of data preprocessing methods, and (4) parametric Bayesian learning applied to different graphical models. The performance of four different BBN models was assessed and compared based on an unseen testing set to evaluate the generalizability of the proposed BBN model. Model evaluation results indicated that the optimal BBN is a tree-augmented Bayesian network that can estimate the discretized capacity of bridge piles with an accuracy of 90.51%. The proposed BBN model was further validated by testing its generalizability performance on another data from a different location. This study contributed to the body of knowledge by providing a novel, intrinsically interpretable, and robust data-driven expert knowledge–guided model for accurately estimating the bearing capacity of bridge piles. Ultimately, this paper aims to attract more research and practical attention toward developing knowledge-based white-box models for advancing the predictive analytics of bridge pile-related data and decisions.
    publisherASCE
    titleExpert Knowledge–Guided Bayesian Belief Networks for Predicting Bridge Pile Capacity
    typeJournal Article
    journal volume28
    journal issue9
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/JBENF2.BEENG-6096
    journal fristpage04023058-1
    journal lastpage04023058-18
    page18
    treeJournal of Bridge Engineering:;2023:;Volume ( 028 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian