YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Characteristics of Freezing–Thawing Aeolian Soil under Intermittent Cyclic Loading

    Source: International Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 010::page 04023171-1
    Author:
    Jiashun Liu
    ,
    Yu Ren
    ,
    Kaixin Zhu
    ,
    Yanyan Cai
    ,
    Hang Zhang
    ,
    Jiaxu Jin
    DOI: 10.1061/IJGNAI.GMENG-8633
    Publisher: ASCE
    Abstract: To investigate the dynamic characteristics of the soil in seasonally frozen areas under intermittent cyclic loading, a series of dynamic triaxial tests on frozen–thawed aeolian soil were conducted by using the global digital system dynamic triaxial apparatus (GDS-DYNTTS). The dynamic elastic modulus and the dynamic damping ratio of freeze–thaw aeolian soil under different effective consolidation confining pressures, freeze–thaw cycles, dynamic stress amplitudes, and vibration frequencies were investigated. The results demonstrated a “step-type” dynamic elastic modulus curve for freeze–thaw aeolian soil under intermittent cyclic loading, and higher values were found compared to when the soil was under continuous vibration load. The developmental trend of the dynamic damping ratio was divided into accelerated growth and stable stages. The dynamic damping ratio under the intermittent condition was lower than that under continuous vibration load, which indicated that the intermittent stage reduced the internal energy consumption of soil samples and provided an improved buffering capacity against the vibration load. Overall, the fractional-order mathematical model based on the time-hardening approach exhibited good prediction skills for the freezing–thawing aeolian soil dynamic elastic modulus under intermittent cyclic loading. The results of this study will provide beneficial guidelines for engineering construction and disaster prevention practices in areas with seasonally frozen soils.
    • Download: (2.314Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Characteristics of Freezing–Thawing Aeolian Soil under Intermittent Cyclic Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293217
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorJiashun Liu
    contributor authorYu Ren
    contributor authorKaixin Zhu
    contributor authorYanyan Cai
    contributor authorHang Zhang
    contributor authorJiaxu Jin
    date accessioned2023-11-27T23:00:44Z
    date available2023-11-27T23:00:44Z
    date issued10/1/2023 12:00:00 AM
    date issued2023-10-01
    identifier otherIJGNAI.GMENG-8633.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293217
    description abstractTo investigate the dynamic characteristics of the soil in seasonally frozen areas under intermittent cyclic loading, a series of dynamic triaxial tests on frozen–thawed aeolian soil were conducted by using the global digital system dynamic triaxial apparatus (GDS-DYNTTS). The dynamic elastic modulus and the dynamic damping ratio of freeze–thaw aeolian soil under different effective consolidation confining pressures, freeze–thaw cycles, dynamic stress amplitudes, and vibration frequencies were investigated. The results demonstrated a “step-type” dynamic elastic modulus curve for freeze–thaw aeolian soil under intermittent cyclic loading, and higher values were found compared to when the soil was under continuous vibration load. The developmental trend of the dynamic damping ratio was divided into accelerated growth and stable stages. The dynamic damping ratio under the intermittent condition was lower than that under continuous vibration load, which indicated that the intermittent stage reduced the internal energy consumption of soil samples and provided an improved buffering capacity against the vibration load. Overall, the fractional-order mathematical model based on the time-hardening approach exhibited good prediction skills for the freezing–thawing aeolian soil dynamic elastic modulus under intermittent cyclic loading. The results of this study will provide beneficial guidelines for engineering construction and disaster prevention practices in areas with seasonally frozen soils.
    publisherASCE
    titleDynamic Characteristics of Freezing–Thawing Aeolian Soil under Intermittent Cyclic Loading
    typeJournal Article
    journal volume23
    journal issue10
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-8633
    journal fristpage04023171-1
    journal lastpage04023171-12
    page12
    treeInternational Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian