YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Longwall Face Mining Stress Evolution Based on the Nonlinear Compression Characteristics of Goaf Gangue

    Source: International Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 008::page 04023120-1
    Author:
    Jinshuai Guo
    ,
    Liqiang Ma
    ,
    Zhigang Liu
    ,
    Ichhuy Ngo
    ,
    Yonghui Wu
    DOI: 10.1061/IJGNAI.GMENG-8627
    Publisher: ASCE
    Abstract: The nonlinear compression mechanical properties of broken gangue in goaf directly affect the stress, deformation, and failure characteristics of mining strata. A numerical simulation is an effective approach when analyzing engineering issues during coal seam mining. Therefore, the appropriate material model and reasonable material parameters of the goaf gangue are critical in the study of the mechanical properties and mining stress evolution law. This paper adopted the double-yield (D-Y) material model to characterize the mechanical properties of goaf gangue. It established the corresponding relationship between the Salamon constitutive equation and D-Y material model parameters. Then, the numerical simulation of roof caving, gangue stack, and gangue compression during coal seam mining was realized using FLAC3D. A numerical model of longwall working face mining was established based on typical coal mining geological conditions to determine the stress evolution law in the roof and floor strata. The synchronous variation law in the vertical (σz) and horizontal stresses in the roof strata was opposite, and it was consistent in the floor strata. Finally, the evolution laws were equivalent converted into the mining triaxial compression (MTC) path, in which the mining roof triaxial compression (MRTC) path presented an S-shape, and the mining floor triaxial compression (MFTC) path presented a reverse S-shape. The results of this paper could be a basis for the study of the mechanical properties when mining rock and strata control.
    • Download: (2.256Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Longwall Face Mining Stress Evolution Based on the Nonlinear Compression Characteristics of Goaf Gangue

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293216
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorJinshuai Guo
    contributor authorLiqiang Ma
    contributor authorZhigang Liu
    contributor authorIchhuy Ngo
    contributor authorYonghui Wu
    date accessioned2023-11-27T23:00:40Z
    date available2023-11-27T23:00:40Z
    date issued8/1/2023 12:00:00 AM
    date issued2023-08-01
    identifier otherIJGNAI.GMENG-8627.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293216
    description abstractThe nonlinear compression mechanical properties of broken gangue in goaf directly affect the stress, deformation, and failure characteristics of mining strata. A numerical simulation is an effective approach when analyzing engineering issues during coal seam mining. Therefore, the appropriate material model and reasonable material parameters of the goaf gangue are critical in the study of the mechanical properties and mining stress evolution law. This paper adopted the double-yield (D-Y) material model to characterize the mechanical properties of goaf gangue. It established the corresponding relationship between the Salamon constitutive equation and D-Y material model parameters. Then, the numerical simulation of roof caving, gangue stack, and gangue compression during coal seam mining was realized using FLAC3D. A numerical model of longwall working face mining was established based on typical coal mining geological conditions to determine the stress evolution law in the roof and floor strata. The synchronous variation law in the vertical (σz) and horizontal stresses in the roof strata was opposite, and it was consistent in the floor strata. Finally, the evolution laws were equivalent converted into the mining triaxial compression (MTC) path, in which the mining roof triaxial compression (MRTC) path presented an S-shape, and the mining floor triaxial compression (MFTC) path presented a reverse S-shape. The results of this paper could be a basis for the study of the mechanical properties when mining rock and strata control.
    publisherASCE
    titleNumerical Simulation of Longwall Face Mining Stress Evolution Based on the Nonlinear Compression Characteristics of Goaf Gangue
    typeJournal Article
    journal volume23
    journal issue8
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-8627
    journal fristpage04023120-1
    journal lastpage04023120-12
    page12
    treeInternational Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian