YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Rock Fracture and Permeability Characteristics under Stress–Seepage–Damage Coupling Action

    Source: International Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 001::page 04022257-1
    Author:
    Zheng Li
    ,
    Zhiqiang Zhou
    DOI: 10.1061/(ASCE)GM.1943-5622.0002622
    Publisher: American Society of Civil Engineers
    Abstract: In the field of rock mechanics, the stress–seepage–damage coupling numerical simulation of rock has always been a hot topic but a difficult problem. Based on this background, we newly derive the smoothed particle hydrodynamics (SPH) form of the seepage equation and a two-dimensional (2D) stress–seepage–damage coupling constitutive model. The proposed coupling model considers the heterogeneity of the engineering rock mass and overcomes the difficulty of the conventional SPH algorithm in stress–seepage–damage calculation. Stable one-dimensional (1D) seepage is first simulated to verify the correctness of the seepage equation and that the simulation results coincide with traditional analytical solutions. Then two triaxial compression experiments considering seepage and no-seepage conditions are simulated to show that the coupled model can well simulate the progressive rock failure process and the change in permeability. The correctness of the coupling model is verified by comparing the simulated results with experimental results. The existence of a seepage field advances the initial cracking time and weakens the peak strength of the rock. Finally, the progressive damage processes of surrounding rock excavation under unloading action are simulated, showing that stress–seepage–damage coupling model has application prospects in rock engineering. The research results may provide some references for the application of the SPH method in the stress–seepage–damage coupling simulation of rock.
    • Download: (4.148Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Rock Fracture and Permeability Characteristics under Stress–Seepage–Damage Coupling Action

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4293033
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorZheng Li
    contributor authorZhiqiang Zhou
    date accessioned2023-08-16T19:16:29Z
    date available2023-08-16T19:16:29Z
    date issued2023/01/01
    identifier other(ASCE)GM.1943-5622.0002622.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293033
    description abstractIn the field of rock mechanics, the stress–seepage–damage coupling numerical simulation of rock has always been a hot topic but a difficult problem. Based on this background, we newly derive the smoothed particle hydrodynamics (SPH) form of the seepage equation and a two-dimensional (2D) stress–seepage–damage coupling constitutive model. The proposed coupling model considers the heterogeneity of the engineering rock mass and overcomes the difficulty of the conventional SPH algorithm in stress–seepage–damage calculation. Stable one-dimensional (1D) seepage is first simulated to verify the correctness of the seepage equation and that the simulation results coincide with traditional analytical solutions. Then two triaxial compression experiments considering seepage and no-seepage conditions are simulated to show that the coupled model can well simulate the progressive rock failure process and the change in permeability. The correctness of the coupling model is verified by comparing the simulated results with experimental results. The existence of a seepage field advances the initial cracking time and weakens the peak strength of the rock. Finally, the progressive damage processes of surrounding rock excavation under unloading action are simulated, showing that stress–seepage–damage coupling model has application prospects in rock engineering. The research results may provide some references for the application of the SPH method in the stress–seepage–damage coupling simulation of rock.
    publisherAmerican Society of Civil Engineers
    titleNumerical Simulation of Rock Fracture and Permeability Characteristics under Stress–Seepage–Damage Coupling Action
    typeJournal Article
    journal volume23
    journal issue1
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002622
    journal fristpage04022257-1
    journal lastpage04022257-18
    page18
    treeInternational Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian