YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Gamma Rays as Modifiers of the Compressive and Flexural Properties of Polyester Polymer Concrete

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 006::page 04023133-1
    Author:
    Miguel Martínez-López
    ,
    Gonzalo Martínez-Barrera
    ,
    Juan Enrique Martínez-Martínez
    DOI: 10.1061/JMCEE7.MTENG-14892
    Publisher: American Society of Civil Engineers
    Abstract: To improve the mechanical and thermal properties of materials, alternative posttreatments have been proposed. One of these posttreatments is based on the use of ionizing radiation. This work studied the effects of gamma rays on the mechanical and thermal properties of polymer concrete (PC) produced with 80% silica sand and 20% polyester resin. High gamma irradiation doses (100–500 kGy) were used. Mechanical properties (compressive and flexural strength), and thermal properties (thermal conductivity, specific heat, and thermal diffusivity) were analyzed. The results show that the highest values of compressive and flexural strength and elasticity modulus occur when polymer concrete is irradiated at 400 kGy. The compressive strength of the reference concrete was 51 MPa; this resistance increased to 62 MPa (23% higher) when polymer concrete was irradiated at 400 kGy. The modulus of elasticity increased 12%, from 2.17 to 2.44 GPa, whereas the flexural strength increased from 16.2 to 17.7 MPa (9%). Changes in the thermal properties (mainly the specific heat) were obtained at 100 and 200 kGy doses. The results were related to the surface modifications produced in the irradiated polyester resin (analyzed by scanning electron microscopy) and its chemical structure (studied by Fourier-transform infrared and Raman spectroscopies).
    • Download: (2.366Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Gamma Rays as Modifiers of the Compressive and Flexural Properties of Polyester Polymer Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292990
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMiguel Martínez-López
    contributor authorGonzalo Martínez-Barrera
    contributor authorJuan Enrique Martínez-Martínez
    date accessioned2023-08-16T19:14:48Z
    date available2023-08-16T19:14:48Z
    date issued2023/06/01
    identifier otherJMCEE7.MTENG-14892.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292990
    description abstractTo improve the mechanical and thermal properties of materials, alternative posttreatments have been proposed. One of these posttreatments is based on the use of ionizing radiation. This work studied the effects of gamma rays on the mechanical and thermal properties of polymer concrete (PC) produced with 80% silica sand and 20% polyester resin. High gamma irradiation doses (100–500 kGy) were used. Mechanical properties (compressive and flexural strength), and thermal properties (thermal conductivity, specific heat, and thermal diffusivity) were analyzed. The results show that the highest values of compressive and flexural strength and elasticity modulus occur when polymer concrete is irradiated at 400 kGy. The compressive strength of the reference concrete was 51 MPa; this resistance increased to 62 MPa (23% higher) when polymer concrete was irradiated at 400 kGy. The modulus of elasticity increased 12%, from 2.17 to 2.44 GPa, whereas the flexural strength increased from 16.2 to 17.7 MPa (9%). Changes in the thermal properties (mainly the specific heat) were obtained at 100 and 200 kGy doses. The results were related to the surface modifications produced in the irradiated polyester resin (analyzed by scanning electron microscopy) and its chemical structure (studied by Fourier-transform infrared and Raman spectroscopies).
    publisherAmerican Society of Civil Engineers
    titleGamma Rays as Modifiers of the Compressive and Flexural Properties of Polyester Polymer Concrete
    typeJournal Article
    journal volume35
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-14892
    journal fristpage04023133-1
    journal lastpage04023133-10
    page10
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian