YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Stability of Slopes under Water Drawdown Conditions

    Source: International Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 001::page 04022254-1
    Author:
    Qiujing Pan
    ,
    Ruifeng Zhang
    ,
    Sutang Wang
    ,
    Jingyu Chen
    ,
    Biao Zhang
    ,
    Jifeng Zou
    ,
    Xiaoli Yang
    DOI: 10.1061/(ASCE)GM.1943-5622.0002614
    Publisher: American Society of Civil Engineers
    Abstract: In practical engineering, slopes near reservoirs are susceptible to collapse during the rising and falling of water levels, resulting in huge financial losses. Three-dimensional (3D) upper-bound analysis is an effective vehicle to assess slope stability under water drawdown. However, in previously published 3D upper-bound analysis, the pore water pressure distribution caused by drawdown is often approximately determined by employing a pore-pressure coefficient, which is not theoretically sound and fails to give rigorous upper-bound estimations of slope stability. To overcome this shortcoming, the hydraulic head distribution of a slope subjected to drawdown was determined numerically using seepage flow calculations. The obtained hydraulic head distribution was subsequently incorporated into the 3D rotational failure mechanism of the kinematic approach of limit analysis, so as to deliver an upper-bound solution to slope safety factors. To validate the proposed approach, a case study on the Chenjiawan slope at the Three Gorges Reservoir, China, and comparisons with numerical calculations and previous studies are performed. Four different drawdown conditions are considered in this study and corresponding stability charts are provided for directly assessing the safety factors of slopes subjected to different drawdown conditions. The effects of different drawdown processes on the slope’s stability are studied, showing the unfavorable effect of the external drawdown process and the beneficial effect of the internal drawdown process.
    • Download: (1.773Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Stability of Slopes under Water Drawdown Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292967
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorQiujing Pan
    contributor authorRuifeng Zhang
    contributor authorSutang Wang
    contributor authorJingyu Chen
    contributor authorBiao Zhang
    contributor authorJifeng Zou
    contributor authorXiaoli Yang
    date accessioned2023-08-16T19:13:48Z
    date available2023-08-16T19:13:48Z
    date issued2023/01/01
    identifier other(ASCE)GM.1943-5622.0002614.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292967
    description abstractIn practical engineering, slopes near reservoirs are susceptible to collapse during the rising and falling of water levels, resulting in huge financial losses. Three-dimensional (3D) upper-bound analysis is an effective vehicle to assess slope stability under water drawdown. However, in previously published 3D upper-bound analysis, the pore water pressure distribution caused by drawdown is often approximately determined by employing a pore-pressure coefficient, which is not theoretically sound and fails to give rigorous upper-bound estimations of slope stability. To overcome this shortcoming, the hydraulic head distribution of a slope subjected to drawdown was determined numerically using seepage flow calculations. The obtained hydraulic head distribution was subsequently incorporated into the 3D rotational failure mechanism of the kinematic approach of limit analysis, so as to deliver an upper-bound solution to slope safety factors. To validate the proposed approach, a case study on the Chenjiawan slope at the Three Gorges Reservoir, China, and comparisons with numerical calculations and previous studies are performed. Four different drawdown conditions are considered in this study and corresponding stability charts are provided for directly assessing the safety factors of slopes subjected to different drawdown conditions. The effects of different drawdown processes on the slope’s stability are studied, showing the unfavorable effect of the external drawdown process and the beneficial effect of the internal drawdown process.
    publisherAmerican Society of Civil Engineers
    titleThree-Dimensional Stability of Slopes under Water Drawdown Conditions
    typeJournal Article
    journal volume23
    journal issue1
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002614
    journal fristpage04022254-1
    journal lastpage04022254-12
    page12
    treeInternational Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian