YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bridge Infrastructure Management System: Autoencoder Approach for Predicting Bridge Condition Ratings

    Source: Journal of Infrastructure Systems:;2023:;Volume ( 029 ):;issue: 001::page 04022042-1
    Author:
    Monica Rajkumar
    ,
    Sudhagar Nagarajan
    ,
    Madasamy Arockiasamy
    DOI: 10.1061/JITSE4.ISENG-2123
    Publisher: American Society of Civil Engineers
    Abstract: Being an essential component of our economy, bridges play a vital role in facilitating transportation of people and goods all over the world. Bridge infrastructure systems help in developing an effective way to monitor and protect structures in all aspects. However, the bridges are exposed to various kinds of damages due to aging, heavy load of traffic, quality of construction, and so on. Hence, determining the condition of such bridges through a proper infrastructure management system is important for understanding the potential loss in the longevity of the structures. This research paper presents the development and evaluation of an autoencoder-random forest (AE-RF) model to predict the condition rating of bridges using the National Bridge Inventory (NBI) database. To demonstrate the proposed model, a case study using bridges present in the US state of Florida has been performed using historical NBI data (2011–2020). Through this research, it was identified that when one of the deep learning models, named autoencoder, is combined with random forest (RF), it results in an efficient model for determining the condition ratings of the bridge components with fewer input parameters. The developed model was about 90% accurate in predicting the bridge’s deck condition by using other rating values as input variables and about 79% accurate without the use of any other rating factors, thereby addressing the existing research gap in determining the condition rating without the use of historic condition rating. On the other hand, the model was 78% and 77% accurate in determining the condition ratings for superstructure and substructure without using historic ratings and evaluation parameters. Hence, the proposed model would be more reliable in the evaluation of condition of existing bridges across the nation.
    • Download: (4.961Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bridge Infrastructure Management System: Autoencoder Approach for Predicting Bridge Condition Ratings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292841
    Collections
    • Journal of Infrastructure Systems

    Show full item record

    contributor authorMonica Rajkumar
    contributor authorSudhagar Nagarajan
    contributor authorMadasamy Arockiasamy
    date accessioned2023-08-16T19:09:19Z
    date available2023-08-16T19:09:19Z
    date issued2023/03/01
    identifier otherJITSE4.ISENG-2123.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292841
    description abstractBeing an essential component of our economy, bridges play a vital role in facilitating transportation of people and goods all over the world. Bridge infrastructure systems help in developing an effective way to monitor and protect structures in all aspects. However, the bridges are exposed to various kinds of damages due to aging, heavy load of traffic, quality of construction, and so on. Hence, determining the condition of such bridges through a proper infrastructure management system is important for understanding the potential loss in the longevity of the structures. This research paper presents the development and evaluation of an autoencoder-random forest (AE-RF) model to predict the condition rating of bridges using the National Bridge Inventory (NBI) database. To demonstrate the proposed model, a case study using bridges present in the US state of Florida has been performed using historical NBI data (2011–2020). Through this research, it was identified that when one of the deep learning models, named autoencoder, is combined with random forest (RF), it results in an efficient model for determining the condition ratings of the bridge components with fewer input parameters. The developed model was about 90% accurate in predicting the bridge’s deck condition by using other rating values as input variables and about 79% accurate without the use of any other rating factors, thereby addressing the existing research gap in determining the condition rating without the use of historic condition rating. On the other hand, the model was 78% and 77% accurate in determining the condition ratings for superstructure and substructure without using historic ratings and evaluation parameters. Hence, the proposed model would be more reliable in the evaluation of condition of existing bridges across the nation.
    publisherAmerican Society of Civil Engineers
    titleBridge Infrastructure Management System: Autoencoder Approach for Predicting Bridge Condition Ratings
    typeJournal Article
    journal volume29
    journal issue1
    journal titleJournal of Infrastructure Systems
    identifier doi10.1061/JITSE4.ISENG-2123
    journal fristpage04022042-1
    journal lastpage04022042-10
    page10
    treeJournal of Infrastructure Systems:;2023:;Volume ( 029 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian