YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design Hydrographs in Small Watersheds from General Unit Hydrograph Model and NRCS-NOAA Rainfall Distributions

    Source: Journal of Hydrologic Engineering:;2023:;Volume ( 028 ):;issue: 005::page 04023014-1
    Author:
    Junke Guo
    DOI: 10.1061/JHYEFF.HEENG-5942
    Publisher: American Society of Civil Engineers
    Abstract: It is time to shift our paradigm of small watershed design from a graphic (or tabular) to a theoretical method, because (1) the recent general unit hydrograph (UH) model can convert a design hyetograph to a design hydrograph simply, accurately, and theoretically; (2) the Natural Resources Conservation Service (NRCS) has recommended that the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 rainfall data of depths and distributions at a specific site, which is often called the NRCS-NOAA rainfall distributions, should be used for small watershed design if runoff data are unavailable; and (3) in this paper, we have presented a design procedure that formulates design hydrographs from the NRCS-NOAA Atlas 14 rainfall distributions and the general UH model automatically, using the MATLAB convolution function. A literature review indicated that the current practice for design hydrographs in small watersheds from hyetographs is laborious because both hyetographs and UHs are discrete. By contrast, the theoretical general UH model can significantly simplify this process. In this research, we first found analytic design hydrographs from rectangular and triangular hyetographs, which were next used to validate the MATLAB convolution method. We then proposed a double exponential rainfall distribution for both asymmetric and symmetric hyetographs. After that, we modified the symmetric exponential distribution model to describe NRCS-NOAA Atlas 14 data for site-specific hyetographs, which are finally convolved with the general UH model for site-specific design hydrographs, using the MATLAB convolution function. It is noteworthy that the proposed method extends the classic rational method from the peak discharge to the whole hydrograph; and it is valid for both continuous and discrete hyetographs. Hence, it provides a powerful tool in urban development, agriculture land use, roadway planning, and airport construction; it can also be used to evaluate an existing drainage system under various meteorologic–hydrologic conditions. Finally, we expect that this research will shift our current design practice and university UH teaching from an empirical to a theoretical paradigm in the near future.
    • Download: (2.176Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design Hydrographs in Small Watersheds from General Unit Hydrograph Model and NRCS-NOAA Rainfall Distributions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292815
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorJunke Guo
    date accessioned2023-08-16T19:08:21Z
    date available2023-08-16T19:08:21Z
    date issued2023/05/01
    identifier otherJHYEFF.HEENG-5942.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292815
    description abstractIt is time to shift our paradigm of small watershed design from a graphic (or tabular) to a theoretical method, because (1) the recent general unit hydrograph (UH) model can convert a design hyetograph to a design hydrograph simply, accurately, and theoretically; (2) the Natural Resources Conservation Service (NRCS) has recommended that the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 rainfall data of depths and distributions at a specific site, which is often called the NRCS-NOAA rainfall distributions, should be used for small watershed design if runoff data are unavailable; and (3) in this paper, we have presented a design procedure that formulates design hydrographs from the NRCS-NOAA Atlas 14 rainfall distributions and the general UH model automatically, using the MATLAB convolution function. A literature review indicated that the current practice for design hydrographs in small watersheds from hyetographs is laborious because both hyetographs and UHs are discrete. By contrast, the theoretical general UH model can significantly simplify this process. In this research, we first found analytic design hydrographs from rectangular and triangular hyetographs, which were next used to validate the MATLAB convolution method. We then proposed a double exponential rainfall distribution for both asymmetric and symmetric hyetographs. After that, we modified the symmetric exponential distribution model to describe NRCS-NOAA Atlas 14 data for site-specific hyetographs, which are finally convolved with the general UH model for site-specific design hydrographs, using the MATLAB convolution function. It is noteworthy that the proposed method extends the classic rational method from the peak discharge to the whole hydrograph; and it is valid for both continuous and discrete hyetographs. Hence, it provides a powerful tool in urban development, agriculture land use, roadway planning, and airport construction; it can also be used to evaluate an existing drainage system under various meteorologic–hydrologic conditions. Finally, we expect that this research will shift our current design practice and university UH teaching from an empirical to a theoretical paradigm in the near future.
    publisherAmerican Society of Civil Engineers
    titleDesign Hydrographs in Small Watersheds from General Unit Hydrograph Model and NRCS-NOAA Rainfall Distributions
    typeJournal Article
    journal volume28
    journal issue5
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/JHYEFF.HEENG-5942
    journal fristpage04023014-1
    journal lastpage04023014-17
    page17
    treeJournal of Hydrologic Engineering:;2023:;Volume ( 028 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian