YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Uncertainty Analysis and Quantification in Flood Insurance Rate Maps Using Bayesian Model Averaging and Hierarchical BMA

    Source: Journal of Hydrologic Engineering:;2023:;Volume ( 028 ):;issue: 002::page 04022038-1
    Author:
    Tao Huang
    ,
    Venkatesh Merwade
    DOI: 10.1061/JHYEFF.HEENG-5851
    Publisher: American Society of Civil Engineers
    Abstract: Flood Insurance Rate Maps (FIRMs) managed by FEMA have been providing ongoing flood information to most communities in the United States over the past half-century. However, the uncertainty associated with the modeling of FIRMs, some of which are created by using a single Hydrologic Engineering Center River Analysis System (HEC-RAS) one-dimensional (1D) steady-flow model, may have adverse effects on the reliability of flood stage and inundation extent predictions. Therefore, a systematic understanding of the uncertainty in the modeling process of FIRMs is necessary. Bayesian model averaging (BMA), which is a statistical approach that can combine estimations from multiple models and produce reliable probabilistic predictions, was applied to evaluating the uncertainty associated with FIRMs. In this study, both the BMA and hierarchical BMA (HBMA) approaches were used to quantify the uncertainty within the detailed FEMA models of the Deep River and the Saint Marys River in the state of Indiana based on water stage predictions from 150 HEC-RAS 1D unsteady-flow model configurations that incorporate four uncertainty sources including bridges, channel roughness, floodplain roughness, and upstream flow input. Given the ensemble predictions and the observed water stage data in the training period, the BMA weight and the variance for each model member were obtained, and then the BMA prediction ability was validated for the observed data from the later period. The results indicate that the BMA prediction is more robust than both the original FEMA model and the ensemble mean. Furthermore, the HBMA framework explicitly shows the propagation of various uncertainty sources, and both the channel roughness and the upstream flow input have a larger impact on prediction variance than bridges. Hence, it provides insights for modelers into the relative impact of individual uncertainty sources in the flood modeling process. The results show that the probabilistic flood maps developed based on the BMA analysis could provide more reliable predictions than the deterministic FIRMs.
    • Download: (6.360Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Uncertainty Analysis and Quantification in Flood Insurance Rate Maps Using Bayesian Model Averaging and Hierarchical BMA

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292808
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorTao Huang
    contributor authorVenkatesh Merwade
    date accessioned2023-08-16T19:08:05Z
    date available2023-08-16T19:08:05Z
    date issued2023/02/01
    identifier otherJHYEFF.HEENG-5851.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292808
    description abstractFlood Insurance Rate Maps (FIRMs) managed by FEMA have been providing ongoing flood information to most communities in the United States over the past half-century. However, the uncertainty associated with the modeling of FIRMs, some of which are created by using a single Hydrologic Engineering Center River Analysis System (HEC-RAS) one-dimensional (1D) steady-flow model, may have adverse effects on the reliability of flood stage and inundation extent predictions. Therefore, a systematic understanding of the uncertainty in the modeling process of FIRMs is necessary. Bayesian model averaging (BMA), which is a statistical approach that can combine estimations from multiple models and produce reliable probabilistic predictions, was applied to evaluating the uncertainty associated with FIRMs. In this study, both the BMA and hierarchical BMA (HBMA) approaches were used to quantify the uncertainty within the detailed FEMA models of the Deep River and the Saint Marys River in the state of Indiana based on water stage predictions from 150 HEC-RAS 1D unsteady-flow model configurations that incorporate four uncertainty sources including bridges, channel roughness, floodplain roughness, and upstream flow input. Given the ensemble predictions and the observed water stage data in the training period, the BMA weight and the variance for each model member were obtained, and then the BMA prediction ability was validated for the observed data from the later period. The results indicate that the BMA prediction is more robust than both the original FEMA model and the ensemble mean. Furthermore, the HBMA framework explicitly shows the propagation of various uncertainty sources, and both the channel roughness and the upstream flow input have a larger impact on prediction variance than bridges. Hence, it provides insights for modelers into the relative impact of individual uncertainty sources in the flood modeling process. The results show that the probabilistic flood maps developed based on the BMA analysis could provide more reliable predictions than the deterministic FIRMs.
    publisherAmerican Society of Civil Engineers
    titleUncertainty Analysis and Quantification in Flood Insurance Rate Maps Using Bayesian Model Averaging and Hierarchical BMA
    typeJournal Article
    journal volume28
    journal issue2
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/JHYEFF.HEENG-5851
    journal fristpage04022038-1
    journal lastpage04022038-10
    page10
    treeJournal of Hydrologic Engineering:;2023:;Volume ( 028 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian