YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Construction and Demolition Waste as Valuable Resources for Geosynthetic-Encased Stone Columns

    Source: Journal of Hazardous, Toxic, and Radioactive Waste:;2023:;Volume ( 027 ):;issue: 002::page 04022047-1
    Author:
    A. Anita
    ,
    S. Karthika
    ,
    P. V. Divya
    DOI: 10.1061/JHTRBP.HZENG-1175
    Publisher: American Society of Civil Engineers
    Abstract: In this study, the possible utilization of mixed construction and demolition waste (CDW) is evaluated for constructing geosynthetic-encased stone columns. A detailed geotechnical characterization is presented, including investigation of the physical, mechanical, and hydraulic properties of the CDW. Further, the performance of a group of 36 geosynthetic-encased stone columns (GECs) constructed using CDW (CDW-GECs) is investigated by 3D numerical modeling. Both the load-bearing ability and the settlement characteristics of the CDW-GECs showed similar performance to that of GECs made of natural crushed stone aggregates (CSA-GECs). Vertiсаl stresses imparted to the CDW-GEC were 3 times the tоtаl vertiсаl stresses imparted tо the surrоunding sоil, resulting in a stress concentration ratio of 3. This is due to the better stiffness оf the CDW-GECs compared with the surrounding soil and soil arching effect. The CDW-GECs helped in dissipating excess hydrostatic pressure developed in the clay by acting as a vertical drain. Around 65% of the total settlement happened during construction itself. Maximum hoop tension in geosynthetic encasement of the CDW-GECs was developed at a depth of 2.5 times the diameter of the column and was 15 kN/m. The maximum value of hoop tension decreases as the distance of the stone column from the center of the embankment increases. Tension mobilized in the basal geogrid was in agreement with the differential settlement pattern with a maximum value near to the center of the embankment, which is found to be 23 kN/m. The present study indicates that CDW can be considered as a sustainable and valuable resource for the construction of geosynthetic-encased stone columns.
    • Download: (3.129Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Construction and Demolition Waste as Valuable Resources for Geosynthetic-Encased Stone Columns

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292773
    Collections
    • Journal of Hazardous, Toxic, and Radioactive Waste

    Show full item record

    contributor authorA. Anita
    contributor authorS. Karthika
    contributor authorP. V. Divya
    date accessioned2023-08-16T19:06:44Z
    date available2023-08-16T19:06:44Z
    date issued2023/04/01
    identifier otherJHTRBP.HZENG-1175.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292773
    description abstractIn this study, the possible utilization of mixed construction and demolition waste (CDW) is evaluated for constructing geosynthetic-encased stone columns. A detailed geotechnical characterization is presented, including investigation of the physical, mechanical, and hydraulic properties of the CDW. Further, the performance of a group of 36 geosynthetic-encased stone columns (GECs) constructed using CDW (CDW-GECs) is investigated by 3D numerical modeling. Both the load-bearing ability and the settlement characteristics of the CDW-GECs showed similar performance to that of GECs made of natural crushed stone aggregates (CSA-GECs). Vertiсаl stresses imparted to the CDW-GEC were 3 times the tоtаl vertiсаl stresses imparted tо the surrоunding sоil, resulting in a stress concentration ratio of 3. This is due to the better stiffness оf the CDW-GECs compared with the surrounding soil and soil arching effect. The CDW-GECs helped in dissipating excess hydrostatic pressure developed in the clay by acting as a vertical drain. Around 65% of the total settlement happened during construction itself. Maximum hoop tension in geosynthetic encasement of the CDW-GECs was developed at a depth of 2.5 times the diameter of the column and was 15 kN/m. The maximum value of hoop tension decreases as the distance of the stone column from the center of the embankment increases. Tension mobilized in the basal geogrid was in agreement with the differential settlement pattern with a maximum value near to the center of the embankment, which is found to be 23 kN/m. The present study indicates that CDW can be considered as a sustainable and valuable resource for the construction of geosynthetic-encased stone columns.
    publisherAmerican Society of Civil Engineers
    titleConstruction and Demolition Waste as Valuable Resources for Geosynthetic-Encased Stone Columns
    typeJournal Article
    journal volume27
    journal issue2
    journal titleJournal of Hazardous, Toxic, and Radioactive Waste
    identifier doi10.1061/JHTRBP.HZENG-1175
    journal fristpage04022047-1
    journal lastpage04022047-15
    page15
    treeJournal of Hazardous, Toxic, and Radioactive Waste:;2023:;Volume ( 027 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian