YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Geoenvironmental Characterization of Bauxite Residue Ameliorated with Different Amendments

    Source: Journal of Hazardous, Toxic, and Radioactive Waste:;2023:;Volume ( 027 ):;issue: 002::page 04022048-1
    Author:
    Manas Chandan Mishra
    ,
    Narala Gangadhara Reddy
    ,
    Bendadi Hanumantha Rao
    DOI: 10.1061/JHTRBP.HZENG-1168
    Publisher: American Society of Civil Engineers
    Abstract: In bauxite residue (BR), the abatement and rebound of pH when ameliorated with different amendments have been reported as prime concerns. In addition, to the best of the authors’ knowledge, no research has focused on the characterization of BR during the decrease and rebound in pH, which happens over an extended period. This characterization is essential to convert posttreated residue into green construction materials and to affirm that it does not pose a threat to the environment. This study aimed to investigate two important points. The evaluation of the efficacy of commonly and widely employed conventional additives and mineral acids while mitigating the pH of the residue and its characterization included sedimentation and leaching with a change in pH. The uniqueness of this study lay in the exploration of the latter point and pH rebound for ≤180 days. Cement, gypsum (G), fly ash (FA), and ground granulated blast furnace slag (GGBS) as conventional additives, and nitric (HNO3) and hydrochloric acids (HCl) as mineral acids were selected to ameliorate BR. A significant pH rebound with time occurred from 6.59 to 9.51 and 7.54 to 9.78 when treated with 1M HCl and HNO3, which indicated the influence of the curing period and ameliorant on the alkalinity. Conventional additives, except for G, and their combinations proved ineffective when mitigating and maintaining pH within acceptable limits (i.e., 8.5). Settling analysis revealed accelerated particle settling at pH 4.5–7.0, which indicated implications for the safe disposal, washing, or slurry thickening of BR. The extensive leaching studies for potentially toxic elements (PTEs), which were further endorsed with a field case study, demonstrated that the amended residue was environmentally safe to be used as a construction material.
    • Download: (1.421Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Geoenvironmental Characterization of Bauxite Residue Ameliorated with Different Amendments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292772
    Collections
    • Journal of Hazardous, Toxic, and Radioactive Waste

    Show full item record

    contributor authorManas Chandan Mishra
    contributor authorNarala Gangadhara Reddy
    contributor authorBendadi Hanumantha Rao
    date accessioned2023-08-16T19:06:43Z
    date available2023-08-16T19:06:43Z
    date issued2023/04/01
    identifier otherJHTRBP.HZENG-1168.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292772
    description abstractIn bauxite residue (BR), the abatement and rebound of pH when ameliorated with different amendments have been reported as prime concerns. In addition, to the best of the authors’ knowledge, no research has focused on the characterization of BR during the decrease and rebound in pH, which happens over an extended period. This characterization is essential to convert posttreated residue into green construction materials and to affirm that it does not pose a threat to the environment. This study aimed to investigate two important points. The evaluation of the efficacy of commonly and widely employed conventional additives and mineral acids while mitigating the pH of the residue and its characterization included sedimentation and leaching with a change in pH. The uniqueness of this study lay in the exploration of the latter point and pH rebound for ≤180 days. Cement, gypsum (G), fly ash (FA), and ground granulated blast furnace slag (GGBS) as conventional additives, and nitric (HNO3) and hydrochloric acids (HCl) as mineral acids were selected to ameliorate BR. A significant pH rebound with time occurred from 6.59 to 9.51 and 7.54 to 9.78 when treated with 1M HCl and HNO3, which indicated the influence of the curing period and ameliorant on the alkalinity. Conventional additives, except for G, and their combinations proved ineffective when mitigating and maintaining pH within acceptable limits (i.e., 8.5). Settling analysis revealed accelerated particle settling at pH 4.5–7.0, which indicated implications for the safe disposal, washing, or slurry thickening of BR. The extensive leaching studies for potentially toxic elements (PTEs), which were further endorsed with a field case study, demonstrated that the amended residue was environmentally safe to be used as a construction material.
    publisherAmerican Society of Civil Engineers
    titleGeoenvironmental Characterization of Bauxite Residue Ameliorated with Different Amendments
    typeJournal Article
    journal volume27
    journal issue2
    journal titleJournal of Hazardous, Toxic, and Radioactive Waste
    identifier doi10.1061/JHTRBP.HZENG-1168
    journal fristpage04022048-1
    journal lastpage04022048-14
    page14
    treeJournal of Hazardous, Toxic, and Radioactive Waste:;2023:;Volume ( 027 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian