YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficient Data-Driven Modeling of Nonlinear Dynamical Systems via Metalearning

    Source: Journal of Engineering Mechanics:;2023:;Volume ( 149 ):;issue: 003::page 04023008-1
    Author:
    Shanwu Li
    ,
    Yongchao Yang
    DOI: 10.1061/JENMDT.EMENG-6917
    Publisher: American Society of Civil Engineers
    Abstract: Data-driven modeling of nonlinear dynamical systems is essential because of the need for a trade-off among complexity, efficiency, and reliability in analytical or numerical studies as well as the difficulty of deriving fully physics-based models. An important limitation is commonly seen in existing works: modeling of a new dynamical system typically starts from scratch, requiring a large amount of data and intensive computation, though some prior experience or knowledge is available from a previously collected database of similar but different systems. However, on the one hand, the data amount for the new dynamical system is often limited, especially for real-world dynamical systems. On the other hand, the computational resource is also limited and a data-driven modeling task is usually computationally expensive, especially for large-scale systems. To improve data efficiency and computational efficiency in data-driven modeling of nonlinear systems, we present an enhanced data-driven modeling approach by incorporating metalearning into a physics-integrated deep learning framework. The core idea is to learn the metaknowledge about how to model a new system from a previously collected database of similar but different systems. Then this metaknowledge is leveraged to enable efficient modeling of a new system with limited data. For validations we conducted numerical experiments on three sets of fundamental nonlinear systems, including Duffing oscillators, nonlinear pendulums, and van der Pol oscillators. We performed both interpolation and extrapolation modelings to investigate the generalization ability of the presented approach. Furthermore, we conducted a quantitative analysis on data efficiency, addressing two critical issues: how few data are sufficient for the new system modeling and how much prior experience (previously collected database of similar but different systems) is needed for the metalearning. The results show that the presented approach improves both data efficiency and computational efficiency, compared with the conventional data-driven modeling approach (without leverage of the prior database) and the pretraining-based approach (simply using the prior database but without metalearning idea). We also discuss the limitations of this work and potential future study.
    • Download: (2.687Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficient Data-Driven Modeling of Nonlinear Dynamical Systems via Metalearning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292655
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorShanwu Li
    contributor authorYongchao Yang
    date accessioned2023-08-16T19:02:09Z
    date available2023-08-16T19:02:09Z
    date issued2023/03/01
    identifier otherJENMDT.EMENG-6917.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292655
    description abstractData-driven modeling of nonlinear dynamical systems is essential because of the need for a trade-off among complexity, efficiency, and reliability in analytical or numerical studies as well as the difficulty of deriving fully physics-based models. An important limitation is commonly seen in existing works: modeling of a new dynamical system typically starts from scratch, requiring a large amount of data and intensive computation, though some prior experience or knowledge is available from a previously collected database of similar but different systems. However, on the one hand, the data amount for the new dynamical system is often limited, especially for real-world dynamical systems. On the other hand, the computational resource is also limited and a data-driven modeling task is usually computationally expensive, especially for large-scale systems. To improve data efficiency and computational efficiency in data-driven modeling of nonlinear systems, we present an enhanced data-driven modeling approach by incorporating metalearning into a physics-integrated deep learning framework. The core idea is to learn the metaknowledge about how to model a new system from a previously collected database of similar but different systems. Then this metaknowledge is leveraged to enable efficient modeling of a new system with limited data. For validations we conducted numerical experiments on three sets of fundamental nonlinear systems, including Duffing oscillators, nonlinear pendulums, and van der Pol oscillators. We performed both interpolation and extrapolation modelings to investigate the generalization ability of the presented approach. Furthermore, we conducted a quantitative analysis on data efficiency, addressing two critical issues: how few data are sufficient for the new system modeling and how much prior experience (previously collected database of similar but different systems) is needed for the metalearning. The results show that the presented approach improves both data efficiency and computational efficiency, compared with the conventional data-driven modeling approach (without leverage of the prior database) and the pretraining-based approach (simply using the prior database but without metalearning idea). We also discuss the limitations of this work and potential future study.
    publisherAmerican Society of Civil Engineers
    titleEfficient Data-Driven Modeling of Nonlinear Dynamical Systems via Metalearning
    typeJournal Article
    journal volume149
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/JENMDT.EMENG-6917
    journal fristpage04023008-1
    journal lastpage04023008-21
    page21
    treeJournal of Engineering Mechanics:;2023:;Volume ( 149 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian