YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Kinetic Temperature of Structures for Resilience, Instability, and Failure Analysis of Building Systems

    Source: Journal of Engineering Mechanics:;2023:;Volume ( 149 ):;issue: 002::page 04022110-1
    Author:
    Konstantinos Keremidis
    ,
    Tina Vartziotis
    ,
    Franz-Josef Ulm
    DOI: 10.1061/JENMDT.EMENG-6860
    Publisher: American Society of Civil Engineers
    Abstract: From theory, calibration and application of the equipartition theorem of statistical physics to structural failure and instability analysis, we introduce the kinetic temperature of structures as an order parameter to ascertain equilibrium and out-of-equilibrium states in structural mechanics. Set within the framework of molecular dynamics-based structural mechanics, this is achieved by connecting the set of momentum balance equations to an outside bath reservoir maintained at a reference temperature history through the Nosé-Hoover thermostat. The problem thus comes down to solving the momentum balance equation with a dissipative mass damping term, which evolves in function of the difference in temperature between the structure’s kinetic temperature/energy and the bath temperature. Following the Zeroth Law of Thermodynamics, it is recognized that a structure is in (thermal) equilibrium as long as the structure’s kinetic temperature attains the bath temperature; whereas it is out-of-equilibrium when the open system (structure plus bath) exhibits a sustained temperature difference. In this case, the structure has exhausted its fluctuation-dissipation capacity, which is indicative—for structures—of a progressive failure and instability. The implementation of the kinetic temperature as an order parameter in structural failure and instability analysis is illustrated for a prototype five-storey building subject to excessive wind and fire loads. It is suggested that the proposed order parameter becomes an integral part of the structural engineering toolbox for resilience studies of buildings and structures.
    • Download: (1.006Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Kinetic Temperature of Structures for Resilience, Instability, and Failure Analysis of Building Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4292643
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorKonstantinos Keremidis
    contributor authorTina Vartziotis
    contributor authorFranz-Josef Ulm
    date accessioned2023-08-16T19:01:37Z
    date available2023-08-16T19:01:37Z
    date issued2023/02/01
    identifier otherJENMDT.EMENG-6860.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292643
    description abstractFrom theory, calibration and application of the equipartition theorem of statistical physics to structural failure and instability analysis, we introduce the kinetic temperature of structures as an order parameter to ascertain equilibrium and out-of-equilibrium states in structural mechanics. Set within the framework of molecular dynamics-based structural mechanics, this is achieved by connecting the set of momentum balance equations to an outside bath reservoir maintained at a reference temperature history through the Nosé-Hoover thermostat. The problem thus comes down to solving the momentum balance equation with a dissipative mass damping term, which evolves in function of the difference in temperature between the structure’s kinetic temperature/energy and the bath temperature. Following the Zeroth Law of Thermodynamics, it is recognized that a structure is in (thermal) equilibrium as long as the structure’s kinetic temperature attains the bath temperature; whereas it is out-of-equilibrium when the open system (structure plus bath) exhibits a sustained temperature difference. In this case, the structure has exhausted its fluctuation-dissipation capacity, which is indicative—for structures—of a progressive failure and instability. The implementation of the kinetic temperature as an order parameter in structural failure and instability analysis is illustrated for a prototype five-storey building subject to excessive wind and fire loads. It is suggested that the proposed order parameter becomes an integral part of the structural engineering toolbox for resilience studies of buildings and structures.
    publisherAmerican Society of Civil Engineers
    titleKinetic Temperature of Structures for Resilience, Instability, and Failure Analysis of Building Systems
    typeJournal Article
    journal volume149
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/JENMDT.EMENG-6860
    journal fristpage04022110-1
    journal lastpage04022110-11
    page11
    treeJournal of Engineering Mechanics:;2023:;Volume ( 149 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian