Show simple item record

contributor authorSampaio de Oliveira, Manuel Lucas
contributor authorUchida, Thomas K.
date accessioned2023-08-16T18:49:47Z
date available2023-08-16T18:49:47Z
date copyright3/28/2023 12:00:00 AM
date issued2023
identifier issn0148-0731
identifier otherbio_145_07_071002.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292555
description abstractSophisticated muscle material models are required to perform detailed finite element simulations of soft tissue; however, state-of-the-art muscle models are not among the built-in materials in popular commercial finite element software packages. Implementing user-defined muscle material models is challenging for two reasons: deriving the tangent modulus tensor for a material with a complex strain energy function is tedious and programing the algorithm to compute it is error-prone. These challenges hinder widespread use of such models in software that employs implicit, nonlinear, Newton-type finite element methods. We implement a muscle material model in Ansys using an approximation of the tangent modulus, which simplifies its derivation and implementation. Three test models were constructed by revolving a rectangle (RR), a right trapezoid (RTR), and a generic obtuse trapezoid (RTO) around the muscle's centerline. A displacement was applied to one end of each muscle, holding the other end fixed. The results were validated against analogous simulations in FEBio, which uses the same muscle model but with the exact tangent modulus. Overall, good agreement was found between our Ansys and FEBio simulations, though some noticeable discrepancies were observed. For the elements along the muscle's centerline, the root-mean-square-percentage error in the Von Mises stress was 0.00%, 3.03%, and 6.75% for the RR, RTR, and RTO models, respectively; similar errors in longitudinal strain were observed. We provide our Ansys implementation so that others can reproduce and extend our results.
publisherThe American Society of Mechanical Engineers (ASME)
titleMuscle Constitutive Model With a Tangent Modulus Approximation: Ansys Implementation and Verification
typeJournal Paper
journal volume145
journal issue7
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4056948
journal fristpage71002-1
journal lastpage71002-10
page10
treeJournal of Biomechanical Engineering:;2023:;volume( 145 ):;issue: 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record