Show simple item record

contributor authorVeley, Emma M.
contributor authorThole, Karen A.
contributor authorFurgeson, Michael T.
contributor authorBogard, David G.
date accessioned2023-08-16T18:09:40Z
date available2023-08-16T18:09:40Z
date copyright1/6/2023 12:00:00 AM
date issued2023
identifier issn0889-504X
identifier otherturbo_145_3_031017.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291529
description abstractTo improve cooling effectiveness of gas turbine hardware, various film cooling hole shapes have previously been researched. Unique design modifications have recently been made possible through the design freedom allotted by additive manufacturing (AM). As one example, creating a rounded inlet for a film-cooling hole can mitigate separation at the inlet. This study explores various geometric features by exploiting the uses of additive manufacturing for shaped film cooling holes at engine scale. Both printability and cooling performance were evaluated. Resulting from this study, additively manufactured holes with hole inlet and exit rounding were printed with some variations from the design intent (DI). The largest deviations from the design intent occurred from dross roughness features located on the leeward side of the hole inlet. The measured overall effectiveness indicated that an as-built inlet fillet decreased in-hole convection as well as decreased jet mixing compared to the as-built sharp inlet. Including an exit fillet, which prevented an overbuilt diffuser exit, was also found to decrease jet mixing. A particular insight gained from this study is the importance of the convective cooling within the hole to the overall cooling performance. In-hole roughness, which is a result of additive manufacturing, increased convective cooling within the holes but also increased jet mixing as the coolant exited the hole. The increased jet mixing caused low overall effectiveness downstream of injection.
publisherThe American Society of Mechanical Engineers (ASME)
titlePrintability and Overall Cooling Performance of Additively Manufactured Holes With Inlet and Exit Rounding
typeJournal Paper
journal volume145
journal issue3
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4056389
journal fristpage31017-1
journal lastpage31017-12
page12
treeJournal of Turbomachinery:;2023:;volume( 145 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record