YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using Machine Learning to Estimate Nonorographic Gravity Wave Characteristics at Source Levels

    Source: Journal of the Atmospheric Sciences:;2023:;volume( 080 ):;issue: 002
    Author:
    Amiramjadi, Mozhgan
    ,
    Plougonven, Riwal
    ,
    Mohebalhojeh, Ali R.
    ,
    Mirzaei, Mohammad
    DOI: 10.1175/JAS-D-22-0021.1
    Publisher: American Meteorological Society
    • Download: (11.66Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using Machine Learning to Estimate Nonorographic Gravity Wave Characteristics at Source Levels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4290755
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorAmiramjadi, Mozhgan
    contributor authorPlougonven, Riwal
    contributor authorMohebalhojeh, Ali R.
    contributor authorMirzaei, Mohammad
    date accessioned2023-08-15T10:40:02Z
    date available2023-08-15T10:40:02Z
    date copyright01 Feb. 2023
    date issued2023
    identifier otherJAS-D-22-0021.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4290755
    languageEnglish
    publisherAmerican Meteorological Society
    titleUsing Machine Learning to Estimate Nonorographic Gravity Wave Characteristics at Source Levels
    typeJournal Paper
    journal volume80
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-22-0021.1
    page440-419
    treeJournal of the Atmospheric Sciences:;2023:;volume( 080 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian