YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Machine Learning Techniques to Improve Multi-Radar Multi-Sensor (MRMS) Precipitation Estimates in the Western United States

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002
    Author:
    Osborne, Andrew P.
    ,
    Zhang, Jian
    ,
    Simpson, Micheal J.
    ,
    Howard, Kenneth W.
    ,
    Cocks, Stephen B.
    DOI: 10.1175/AIES-D-22-0053.1
    Publisher: American Meteorological Society
    • Download: (7.583Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Machine Learning Techniques to Improve Multi-Radar Multi-Sensor (MRMS) Precipitation Estimates in the Western United States

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4290749
    Collections
    • Artificial Intelligence for the Earth Systems

    Show full item record

    contributor authorOsborne, Andrew P.
    contributor authorZhang, Jian
    contributor authorSimpson, Micheal J.
    contributor authorHoward, Kenneth W.
    contributor authorCocks, Stephen B.
    date accessioned2023-08-15T10:39:47Z
    date available2023-08-15T10:39:47Z
    date copyright01 Apr. 2023
    date issued2023
    identifier otherAIES-D-22-0053.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4290749
    languageEnglish
    publisherAmerican Meteorological Society
    titleApplication of Machine Learning Techniques to Improve Multi-Radar Multi-Sensor (MRMS) Precipitation Estimates in the Western United States
    typeJournal Paper
    journal volume2
    journal issue2
    journal titleArtificial Intelligence for the Earth Systems
    identifier doi10.1175/AIES-D-22-0053.1
    page220053
    treeArtificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian