YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improvements to the Land Surface Air Temperature Reconstruction in NOAAGlobalTemp: An Artificial Neural Network Approach

    Source: Artificial Intelligence for the Earth Systems:;2022:;volume( 001 ):;issue: 004
    Author:
    Boyin Huang
    ,
    Xungang Yin
    ,
    Matthew J. Menne
    ,
    Russell Vose
    ,
    Huai-Min Zhang
    DOI: 10.1175/AIES-D-22-0032.1
    Publisher: American Meteorological Society
    Abstract: NOAA global surface temperature (NOAAGlobalTemp) is NOAA’s operational global surface temperature product, which has been widely used in Earth’s climate assessment and monitoring. To improve the spatial interpolation of monthly land surface air temperatures (LSATs) in NOAAGlobalTemp from 1850 to 2020, a three-layer artificial neural network (ANN) system was designed. The ANN system was trained by repeatedly randomly selecting 90% of the LSATs from ERA5 (1950–2019) and validating with the remaining 10%. Validations show clear improvements of ANN over the original empirical orthogonal teleconnection (EOT) method: the global spatial correlation coefficient (SCC) increases from 65% to 80%, and the global root-mean-square difference (RMSD) decreases from 0.99° to 0.57°C during 1850–2020. The improvements of SCCs and RMSDs are larger in the Southern Hemisphere than in the Northern Hemisphere and are larger before the 1950s and where observations are sparse. The ANN system was finally fed in observed LSATs, and its output over the global land surface was compared with those from the EOT method. Comparisons demonstrate similar improvements by ANN over the EOT method: The global SCC increased from 78% to 89%, the global RMSD decreased from 0.93° to 0.68°C, and the LSAT variability quantified by the monthly standard deviation (STD) increases from 1.16° to 1.41°C during 1850–2020. While the SCC, RMSD, and STD at the monthly time scale have been improved, long-term trends remain largely unchanged because the low-frequency component of LSAT in ANN is identical to that in the EOT approach.
    • Download: (4.683Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improvements to the Land Surface Air Temperature Reconstruction in NOAAGlobalTemp: An Artificial Neural Network Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4290402
    Collections
    • Artificial Intelligence for the Earth Systems

    Show full item record

    contributor authorBoyin Huang
    contributor authorXungang Yin
    contributor authorMatthew J. Menne
    contributor authorRussell Vose
    contributor authorHuai-Min Zhang
    date accessioned2023-04-12T18:52:39Z
    date available2023-04-12T18:52:39Z
    date copyright2022/11/28
    date issued2022
    identifier otherAIES-D-22-0032.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4290402
    description abstractNOAA global surface temperature (NOAAGlobalTemp) is NOAA’s operational global surface temperature product, which has been widely used in Earth’s climate assessment and monitoring. To improve the spatial interpolation of monthly land surface air temperatures (LSATs) in NOAAGlobalTemp from 1850 to 2020, a three-layer artificial neural network (ANN) system was designed. The ANN system was trained by repeatedly randomly selecting 90% of the LSATs from ERA5 (1950–2019) and validating with the remaining 10%. Validations show clear improvements of ANN over the original empirical orthogonal teleconnection (EOT) method: the global spatial correlation coefficient (SCC) increases from 65% to 80%, and the global root-mean-square difference (RMSD) decreases from 0.99° to 0.57°C during 1850–2020. The improvements of SCCs and RMSDs are larger in the Southern Hemisphere than in the Northern Hemisphere and are larger before the 1950s and where observations are sparse. The ANN system was finally fed in observed LSATs, and its output over the global land surface was compared with those from the EOT method. Comparisons demonstrate similar improvements by ANN over the EOT method: The global SCC increased from 78% to 89%, the global RMSD decreased from 0.93° to 0.68°C, and the LSAT variability quantified by the monthly standard deviation (STD) increases from 1.16° to 1.41°C during 1850–2020. While the SCC, RMSD, and STD at the monthly time scale have been improved, long-term trends remain largely unchanged because the low-frequency component of LSAT in ANN is identical to that in the EOT approach.
    publisherAmerican Meteorological Society
    titleImprovements to the Land Surface Air Temperature Reconstruction in NOAAGlobalTemp: An Artificial Neural Network Approach
    typeJournal Paper
    journal volume1
    journal issue4
    journal titleArtificial Intelligence for the Earth Systems
    identifier doi10.1175/AIES-D-22-0032.1
    treeArtificial Intelligence for the Earth Systems:;2022:;volume( 001 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian