YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    •   YE&T Library
    • AMS
    • Artificial Intelligence for the Earth Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Global Mesoscale Ocean Variability from Multiyear Altimetry: An Analysis of the Influencing Factors

    Source: Artificial Intelligence for the Earth Systems:;2022:;volume( 001 ):;issue: 003
    Author:
    Yao Yu
    ,
    Sarah T. Gille
    ,
    David T. Sandwell
    ,
    Julian McAuley
    DOI: 10.1175/AIES-D-21-0008.1
    Publisher: American Meteorological Society
    Abstract: Sea surface slope (SSS) responds to oceanic processes and other environmental parameters. This study aims to identify the parameters that influence SSS variability. We use SSS calculated from multiyear satellite altimeter observations and focus on small resolvable scales in the 30–100-km wavelength band. First, we revisit the correlation of mesoscale ocean variability with seafloor roughness as a function of depth, as proposed by Gille et al. Our results confirm that in shallow water there is statistically significant positive correlation between rough bathymetry and surface variability, whereas the opposite is true in the deep ocean. In the next step, we assemble 27 features as input variables to fit the SSS with a linear regression model and a boosted trees regression model, and then we make predictions. Model performance metrics for the linear regression model are
    • Download: (4.121Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Global Mesoscale Ocean Variability from Multiyear Altimetry: An Analysis of the Influencing Factors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4290386
    Collections
    • Artificial Intelligence for the Earth Systems

    Show full item record

    contributor authorYao Yu
    contributor authorSarah T. Gille
    contributor authorDavid T. Sandwell
    contributor authorJulian McAuley
    date accessioned2023-04-12T18:52:15Z
    date available2023-04-12T18:52:15Z
    date copyright2022/07/01
    date issued2022
    identifier otherAIES-D-21-0008.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4290386
    description abstractSea surface slope (SSS) responds to oceanic processes and other environmental parameters. This study aims to identify the parameters that influence SSS variability. We use SSS calculated from multiyear satellite altimeter observations and focus on small resolvable scales in the 30–100-km wavelength band. First, we revisit the correlation of mesoscale ocean variability with seafloor roughness as a function of depth, as proposed by Gille et al. Our results confirm that in shallow water there is statistically significant positive correlation between rough bathymetry and surface variability, whereas the opposite is true in the deep ocean. In the next step, we assemble 27 features as input variables to fit the SSS with a linear regression model and a boosted trees regression model, and then we make predictions. Model performance metrics for the linear regression model are
    publisherAmerican Meteorological Society
    titleGlobal Mesoscale Ocean Variability from Multiyear Altimetry: An Analysis of the Influencing Factors
    typeJournal Paper
    journal volume1
    journal issue3
    journal titleArtificial Intelligence for the Earth Systems
    identifier doi10.1175/AIES-D-21-0008.1
    treeArtificial Intelligence for the Earth Systems:;2022:;volume( 001 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian